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Resume

La caracterisation des tissus est une etape majeure dans les etudes mecanobiologiques. 
En effet, a l'aide des methodes de caracterisation, la qualite des tissus, soit la 
combinaison des proprietes structurelles, compositionnelles et mecaniques, peut etre 
determinee. Ce projet de maftrise focalise sur les methodes de caracterisation 
mecanique pour les etudes in vitro  en bioreacteur. A travers toutes les methodes de 
caracterisation mecanique, nous proposons l’utilisation de celles qui s o n t: 1) non
destructives (i.e. qui offrent la possibility de realiser d'autres essais de caracterisation 
apres les essais de caracterisation mecaniques) et 2) en-ligne (i.e. qui permettent 
l ’observation de la progression des tissus durant l’experimentation, et ce, sans devoir 
deplacer les specimens d'une machine vers une autre). Toutefois, la caracterisation 
mecanique non-destructive en-ligne souleve la question a savoir si cette methode 
d'observation utilisee durant l'experimentation modifie revolution des tissus dans le 
temps.

Ainsi, le but de ce projet de maitrise etait d'approfondir nos connaissances sur les 
parametres qui pourraient affecter la qualite des tissus conjonctifs mous durant une 
experimentation in vitro  en bioreacteur. Ceci passe par une meilleure comprehension 
de la viscoelasticite et viscoplasticite, deux comportements cles des tissus, qui affectent 
l ’impact de ces parametres sur la reponse des tissus vivants a des stimuli 
biophysiques. Done, les deux objectifs de ce projet y ta ien t:

1. De revoir la litterature portant sur deux comportements mycaniques des tissus, 
soient la viscoelasticite et la viscoplasticite, et la fa^on avec laquelle ils affectent 
revolution des tissus sous stim uli biophysiques;

2. D'investiguer si l ’utilisation d'essais diagnostiques d'amplitude physiologique 
pour quantifier les proprietes mecaniques des tissus peut affecter leur evolution 
dans le temps.

Dans ce memoire, nous expliquons que la viscoelasticite et la viscoplasticite des tissus 
proviennent de la structure et de la composition de la matrice extracellulaire. Nous 
decrivons egalement la fa^on avec laquelle ces comportements affectent la competition 
dynamique entre la reparation, la degradation enzymatique et la degradation 
mecanique de la matrice extracellulaire sous stimuli biophysiques. De plus, nous 
specifions des parametres de stimulation, tels que le type de controle ou l'h istoire des 
stimuli, qui pourraient affecter revolution des tissus en reponse a des stimuli 
biophysiques a cause de la viscoplasticite et viscoyiasticite.

Aussi, nous relatons les resultats d'une experimentation de trois jours realisees sur des 
tendons fraichement extraits pour investiguer si l'application d’essais de relaxation de 
contrainte d'amplitude physiologique affecte revolution des tissus sous stimuli 
mecaniques. Nous avons regroupe les tendons selon le protocole de caracterisation (0 
ou 24 essais de relaxation d'amplitude physiologique chaque jou r) et nous avons 
compare Involution des groupes dans le temps. Les essais de relaxation de contraintes 
d'amplitude physiologique ont modifie revolution des tendons en reponse aux stimuli
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mecaniques in vitro. De fa?on generate, le module pointe a augmente dans le temps 
pour le groupe de 0 essai de relaxation de contrainte alors qu 'il a d'abord diminue puis 
legerement augmente pour le groupe de 24 essais de relaxation de contrainte chaque 
jour. La difference entre les deux groupes etait significative. Done, l'insertion d’essais de 
relaxation de contrainte d'amplitude physiologique pendant les periodes de repos entre 
les stimuli mecaniques peut influencer revolution des tissus dans le temps.

Nous concluons qu’il importe de ten ir compte de la viscoelasticite et de la 
viscoplasticite des tissus lors du developpement d’un protocole de stimulation pour une 
etude en bioreacteur ou encore pour une application clinique.

Mots cles : tissus conjonctifs mous, mecanobiologie, evolution des tissus, proprietes des 
tissus, protocole de caracterisation, viscoelasticite, viscoplasticite, en-ligne, non- 
destructif



www.manaraa.com

Abstract

Tissue characterization is a major step in tissue mechanobiological studies. By 
characterization methods, tissue quality i.e. the combination o f tissue structural, 
compositional and mechanical properties, is determined. This research focuses on 
mechanical characterization methods. Among all mechanical characterization methods, 
we propose those ones which are: 1) Non-destructive, (i.e. that reserves the capability 
of doing other characterization tests at the end o f mechanical test; and, 2) In-line, (that 
enables tissue progression observation during experiment, and w ithout transferring the 
specimen from one apparatus to another). However, in-line characterization raises the 
question of whether conducting tissue observation methods during experimentation 
modifies tissue progression over time.

Therefore, the purpose o f this study was to deepen our knowledge about the 
parameters which could affect tissue quality during mechanical testing. This requires a 
better understanding o f viscoelasticity and viscoplasticity, two key behaviors o f tissue, 
affecting the impact o f these parameters (e.g. tissue quality, stimulation parameters) on 
the response o f live tissue to biophysical stimuli. Thus, the objectives o f this study were:

1. To review the literature to find information about two mechanical behaviors of 
tissue i.e. viscoelasticity and viscoplasticity, and the way they affect tissue 
properties

2. To investigate whether diagnostic tests, as mechanical characterization tests to 
observe tissue properties, affect tissue progression

We explain that viscoelasticity and viscoplasticity o f tissue originate from  structure and 
components o f the extracellular matrix. We also describe the way they affect tissue 
dynamic competition between repair, enzymatic degradation and mechanical 
degradation o f the extracellular matrix. Moreover, we specify some tissue stimulation 
parameters, such as stimulation control type or stimulus history, which could affect 
tissue progression in response to biophysical stim uli because o f viscoelasticity and 
viscoplasticity.

Moreover, by conducting a series o f 3-day experiments on freshly extracted tendons, we 
investigated whether applying "stress relaxation" tests at physiological amplitudes 
affects tissue response. We divided the tendons into two groups based on the 
characterization protocol (24 and 0 stress relaxation tests each day), and compared the 
progression o f these groups over time. The stress relaxation tests at physiological 
amplitude modified tissue response to mechanical stim uli in vitro. In general, the 
modulus increased fo r 0 stress relaxation tests, while it  first decreased and then 
increased slightly for 24 stress relaxation tests each day. The difference o f mechanical 
properties between the two groups was significant. Therefore, applying stress 
relaxation tests at physiological amplitude during the rest periods between mechanical 
stimuli can affect live tissue progression over time.

v
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Therefore, it  is essential to take into account the viscoelasticity and viscoplasticity of 
tissue while developing a stimulation protocol fo r bioreactor studies or clinical 
applications.

Keywords: mechanobiology, tissue progression, tissue properties, characterization 
protocol, mechanical characterization, viscoelasticity and viscoplasticity, in-line, non
destructive.
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1. In tro d u c tio n

Mechanobiology is the science studying tissue remodeling in response to 

physical/mechanical environmental stimulation (van der Meulen and Huiskes 2002). 

The major contributors to mechanobiology are: mechanical loading, the mechanisms by 

which cells could sense mechanical loading (mechanotransduction), cell response to 

received biophysical signals, and tissue progression based on mechanical loading and 

cell response.

Mechanobiology may play a major role in preventing and healing mechanically based 

tissue disorders. In addition, improvement o f the function o f engineered tissues 

depends on progress in mechanobiology (van der Meulen and Huiskes 2002).

A major step in mechanobiological studies is tissue characterization. Tissue 

characterization includes the methods which extract information about tissue quality 

i.e. compositional, structural, and mechanical properties o f tissue. As it  is observed in 

Chapter 2 (literature review), different characterization methods exist and are used in 

different laboratories. Unfortunately, most laboratories use destructive methods for 

mechanical characterization at the end o f the experimental protocol. Therefore, by the 

end o f experiment, no complementary characterization o f compositional and structural 

properties can be conducted on tissue.

In our view, among all available methods for tissue mechanical characterization, in-line 

non-destructive tests have more advantages. W ith in-line monitoring, the data during 

experimentation are available at regular intervals thus tissue progression over time can 

be monitored. Moreover, since the stimulation and characterization methods are 

conducted inside the same apparatus (for in v itro  studies), the errors and damages 

which may occur w ith  transferring the samples from one apparatus to another are 

eliminated. In addition, in non-destructive tests conducted at regular intervals, samples 

can be self-compared, thus reducing the number o f samples and animals are needed. 

The data acquired from these self-compared samples are thus more reliable because

1
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there is no intra-sample variability. Finally, at the end of non-destructive tests, other 

complementary characterization tests can be conducted.

All the bioreactor experimentations at Biometiss1 have been carried out based on in

line non-destructive characterization protocols. For most o f them, tissue stimulation 

protocols (a series of operations applied on tissue during experiment including: 

preloading, preconditioning, cyclic loading-unloading, resting, etc.) have been designed 

based on the same standards. For example preconditioning, amplitude and duration of 

preloading and stress-relaxation tests and mechanical stimuli, duration o f resting 

between mechanical stimuli, etc are standardized.

Although it  is very useful to have the information o f tissue progression over time, it 

raises a concern. Does tissue react to our characterization method and does it  alter its 

progression over time? In other words, does the method used to observe tissue during 

the experiment affects experimental results?

These concerns were questioned in the cell mechanics field by (Bao and Suresh 2003). 

The authors asked this paradox: "how can we measure the mechanical behaviour of 

living cells if  they react to our measurement tools? To our knowledge, this is the firs t 

time this topic was discussed at the tissue level. This issue is very im portant because 

the effect, of methods used to characterize tissue, on tissue response, could make the 

experimental result un-reliable.

The objectives of this research project were:

1. To review the literature about two key behaviors of fibrous load bearing 

tissues (i.e. viscoelasticity and viscoplasticity) and explain how they affect 

live tissue response to mechanical characterization;

The effect o f viscoelasticity and viscoplasticity on tissue response is a very im portant 

subject which must be taken into account for treating and preventing tissue disorders 

and improving tissue quality based on mechanobiology. For example, since fibrous load

1 The laboratory at University of Sherbrooke working in the field of Mechanobiology.
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bearing tissues are viscoelastic and viscoplastic, the response of these tissues w ith  two 

different qualities (e.g. healthy vs. damaged) to an identical mechanical stimulation 

could be different (e.g. constructive vs. destructive). Moreover, because of 

viscoelasticity and viscoplasticity o f tissues, changes in stimulation parameters, (e.g. 

changes in nature o f loading: stress vs. strain or static vs. cyclic) could make an 

essential difference in tissue responses.

2. To investigate if diagnostic tests conducted at regular intervals affect live 

tissue response or not.

Either "stimulation protocol” o r "diagnostic test", i.e. mechanical tests interspersed at 

time intervals during the stimulation protocol used to observe tissue progression over 

time, could be used as tissue mechanical characterization test. In either o f these 

methods, some mechanical variables are measured (e.g. load and/or displacement) or 

calculated (e.g. stiffness and/or hysteresis). These variables represent the tissue 

mechanical quality. I f  we measure or calculate these variables at regular intervals, we 

w ill have tissue progression over time.

Using diagnostic tests to evaluate tissue progression over time has an advantage over 

using stimulation protocols in which parameters such as frequency or amplitude could 

change between different experiments, in different laboratories, in d ifferent days, and 

on different tissues. Using diagnostic tests (e.g. stress relaxation tests) makes it  possible 

to define the "diagnostic test", in which parameters such as frequency or amplitude 

remain constant between different experiments, as a "reference' standard" in all 

experiments. However, there is a concern whether diagnostic tests affect tissue 

response or not.

W ith these objectives in view, the thesis contains two articles, one fo r each objective, 

and is divided into six Chapters. In Chapter 2, compositional, structural, and mechanical 

tendon properties are briefly explained. I t  is w orth  noting that the hypotheses and the 

discussions are not lim ited to tendons but are attributed to  all fibrous-load- bearing 

tissues. Some methods used in literature for compositional, structural, and mechanical

3
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characterization are then presented to have an overview o f the characterization 

methods used in tissue quality.

In Chapter 3, the origin o f viscoelasticity and viscoplasticity in tissues and the way they 

affect live tissue properties are explained. This chapter has been submitted as a review 

article.

Another article has been w ritten  to fu lfill objective 2 and is presented in  Chapter 4. As 

reported in this manuscript, live healthy tendons were subjected to physical stim uli at 

physiological amplitude in vitro. Stress-relaxation tests were conducted at regular 

intervals to observe tissue progression over time. We investigated i f  stress-relaxation 

tests affect tissue progression o r not.

In Chapter 5, unpublished results are presented. These results include methods we used 

at Biometiss to characterize tendon structural ECM and cellular quality using 

microscopic images.

Finally, a discussion is presented in Chapter 6 (in both English and French), drawing 

conclusions about this w ork and proposing future studies.

4
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2. State-Of-The-Art

This chapter reviews important literature relative to the presented master's project. It 

is divided in two sections.

In the firs t section, we w ill introduce compositional, structural and mechanical 

properties o f tendons. A combination o f these properties could be defined as tissue 

quality. In the study o f tendon physiology, pathology, or healing an im portant step is 

determining tissue quality. One o f the most important fields o f tissue study which needs 

tissue quality information is mechanobiology. We w ill therefore end the firs t section 

w ith  a b rie f explanation o f mechanobiology but also o f mechanotransduction, the 

important mechanisms which are involved in mechanobiological remodeling o f tissue.

In the second section, we w ill review some literature to highlight the methods of 

gathering information regarding tissue quality, i.e. characterization methods. The 

mentioned characterization methods are the ones which have been mostly used in the 

literature.

2.1 Tendon compositional properties

Tendons are those connective tissues which connect muscle to bone. Tendons generally 

consist o f the ECM and cells (tenocytes) which are, respectively, ine rt and active 

components o f tendons. Although these two components are in a closed and 

bidirectional interaction together, we can devote the mechanical behavior o f the tendon 

mostly to the ECM, and consider cells as responsible for remodeling o f tissue (or mainly 

the ECM) (Kalson, Holmes et al.).

The ECM contains almost 70% water and 30% solid (Margareta Nordin and L. 2001). 

Solid part contains mostlycollagen fiber, some elastin, as well as ground substance 

(Margareta Nordin and L. 2001).

Collagen and elastin are structural proteins o f the ECM. In fact, the biomolecules in the 

ECM could be divided into three subgroups: 1) structural proteins like collagen and 

elastin, 2) specialized proteins like fibronectin, and 3) proteoglycans (Xu 2008).

5
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Collagen is the most im portant component and provides the strength o f tendons against 

applied tensile loads. There are 19 different kinds of collagens of which the most 

abundant type in tendons are type 1 collagens. Their parallel alignment along the 

tendons let them resist tensile load in this direction.

Elastin f ibers, the smallest representatives o f the ECM, represent 1-2% o f dry weight of 

tendon. These proteins are associated w ith  collagen fibers not only to w ithstand tensile 

loads, but to provide elasticity to tendons (Margareta Nordin and L. 2001; Sharma P 

2006).

Ground substance constitutes the remainder. It consists mainly o f proteoglycans, matrix 

glycoproteins and water (Chun k 2003). Glycosaminoglycans, a major component of 

proteoglycans, are large negatively charged and hydrophilic molecules. Because of the 

repulsive force between tw o negative charges, glycosaminoglycans offer tissue 

resistance to compression (Chun k 2003) and may play a role in the spacing o f collagen 

fibres (Hansen, Weiss et al. 2002). They also capture the m ajority of the extracellular 

water (Margareta Nordin and L. 2001) and create a gel-like substance in the 

collagenous matrix (Margareta Nordin and L. 2001). Finally, it is believed that 

molecules from the ground substance play an im portant role in relative motions of 

collagen fibrils in mechanically loaded tendons [(Mosler, Folkhard et al. 1985); (H R C 

Screen 2004)].

2.2 Tendon structural properties

The hierarchical structure of a healthy tendon is shown in Figure 2-1. Tropocollagens 

(collagen molecules) unite into collagen fibrils, collagen fibers2, subfascicles (prim ary 

bundles), and fascicles (secondary bundles). Several fascicles constitute tertiary 

bundles (Liu, Ramanath et al. 2008).

2 There have been some misunderstandings in literature regarding using "fiber" and "fibril". In some 
texts, these two terms have been used interchangeably.
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Primary, secondary and te rtia ry fiber bundles are covered by a th in layer called 

endotenon and the whole tendon is surrounded by another thin layer called epitenon 

(Sharma P 2006).

Tendon cells (tenocytes), which are responsible for production o f collagen fibers and 

of ground substance, are located between fibers. They have an elongated shape when 

observed in the tendon's longitudinal orientation (Margareta Nordin and L. 2001). 

Whereas in cross-section, they appear as star-shaped cells (C M McNeilly 1996).

Some structural criteria to classify the quality include cell shape, collagen organization, 

cell-ECM interaction, cell density, etc. Methods could be divided into three groups: 

qualitative, semi-quantitative, and quantitative which are introduced in the three 

following sections.

We explain these methods, since they are used in clinical applications. Moreover, in our 

in vitro  experimentations, we use these methods to compare the structural quality of 

different groups of samples.
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Figure 2-1: Schematic structure of a normal tendon (Liu, Ramanath et al. 2008)

2.2.1 Qualitative characterization

One method fo r the characterizing tissue quality is histology, i.e. characterization of 

tissue structure using microscopic images. Microscopic images are mainly from light 

(optical) microscopy (OM), and electron microscopy (EM). They both have an objective 

lens to magnify the structures and are used in biology and material science fields 

(Alberts B 1994). In OM, a photon beam is radiated to the objective lens to visualize the 

purpose structure, while in EM, the radiated beam is made up of electrons (Keith 

Wilson 2005). This difference in the type o f radiated beams makes each microscope 

appropriate for special purposes. The electron microscope provides a much higher 

resolution and magnification than optical microscope. Therefore, to resolve very small 

objects, e.g. small molecules w ith  approximate size o f 1 nm, EM should be used.

Table 2-1 demonstrates im portant structural characteristics o f healthy and 

tendinopathic tendons (Xu 2008).
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Table 2-1: Comparison of normal and tendinopathic tendon by microscopy (Xu 2008)

Findings Macroscopic Optical microscopy 

(longitudinal sections)

Electron microscopy 

(transversal sections)

Normal

tendon

Brilliant white

Fibroelastic

Firm texture 

alignment

Organized parallel collagen 

bundles

Spindle shape tenocyte nuclei 

Nuclei parallel alignment

Densely packed collagen fibers

Uniform in diameter and 

orientation of collagen fibers

Tendinopath 

ic tendon

Grey or brown

Tissue is thin, fragile 

and disorganized

Loose texture

Disorganized collagen bundle

Increased ground substance 

consisting of proteoglycan and 

glycosaminoglycan (GAG)

Large mucoid patches and 

vacuoles between fibers3 

(Figure 2-2)

Round with darker-staining 

tenocyte nuclei

Markedly increased number of 

tenocyte nuclei with loss of 

parallel alignment

Increase of vascular and nerve 

ingrowths

Angulation (Figure 2-3), 

bubble formation (Figure 2-4) 

of collagen fibers

Variation in the diameters and 

orientation of collagen fibers

Hypoxic 4(Figure 2-5) changes 

in tenocyte (lipid vacuoles5, 

enlarge lysosomes 5and 

degranulated endoplasmic 

retinaculum7 (Figure 2-5))

3 One type of tendon degeneration. Accumulation of large mucoid patches and vacuoles filled with GAGs 
and proteoglycans between collagen fibers Peter A. Huijbregts, M., MHSc, PT Scott E. Smith, MSc, OT 
(1999). "Tendon Injury: A Review." The lournal of Manual & Manipulative Therapy 7: 71-80.
4 One type of tendon degeneration which is deprivation of adequate oxygen.
5 Lipid accumulation
6 Lysosomes are one of subcellular components which contain waste-breaking enzymes.
7 The endoplasmic reticulum (ER) is a continuous membrane which has many different functions such as : 
translocation of proteins across the ER membrane; the integration of proteins into the membrane; etc. 
Gia K. Voeltz, M. M. R. (2002). "Structural organization of the endoplasmic reticulum." EM BO reports 
3(10): 944-950.

9
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Figure 2-2: Light microscopy of a ruptured Achilles tendon from a twenty-nine-year-old woman. The 
arrow shows the thin and fragile collagen fibers, and the star shows the large vacuoles among the fibers.

(Kannus P 1991)

Figure 2-3: Transmission electron microscopy of a ruptured extensor pollicis longus tendon from a sixty- 
four-year-old woman. The arrow shows the angulation of the collagen fibrils (Kannus P 1991)
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Figure 2-4: Transmission electron microscopy of a ruptured Achilles tendon from a thirty-four-year-old 
man. The arrow shows bubble formation involving some fibrils. (Kannus P 1991)

Figure 2-5: Transmission electron microscopy of a ruptured Achilles tendon from a thirty-three-year-old 
man. The image shows a high-level hypoxic degenerated tenocyte which includes lipid vacuoles (LV), 

enlarged lysosomes (L),and degranulated endoplasmic retinaculum (E) (Kannus P 1991)



www.manaraa.com

2.2.2 Semi-quantitative characterization

Most tissue histological characterization studies do not quantify the properties, but use 

description o f the changes from healthy to damaged tissue histology (Nicola M affiilli 

2008). The method o f description o f structural changes can lead to inadequacy in 

classifying the different levels o f tissue injury. This misunderstanding and uncertainty 

about tissue condition may result in inconsistent diagnosis between specialists (Nicola 

Maffulli 2008).

To avoid this uncertainty in diagnoses by different specialists, some scoring methods 

have been suggested to be used to classify the tendinopathic tendons (Nicola Maffulli

2008). These methods were developed for clinical applications so they score the level of 

tendinopathy. There are two kinds o f such scoring systems: Movin and Bonar systems. 

In each method they score specific variables which evaluate various aspects o f tissue 

quality. Both o f these methods were created for classifying OM images o f longitudinal 

tendon section.

The variables included in the Movin scaling method are: (1) fiber structure, (2) fiber 

arrangement, (3) rounding o f the nuclei, (4) regional variations in cellularity, (5) 

increased vascularity, (6) decreased collagen stainability, and (7) hyalinization. For 

each variable, the score could be 0 (normal tendon) to 3 (the most abnormal 

appearance detectable) (Longo, Franceschi et al. 2008). Therefore the total score of 

each sample could vary between 0 (normal tendon) to 21 (the most severe abnormality 

detectable).

For example (Longo, Franceschi et al. 2008) used Movin scoring method to investigate 

the histological changes o f Supraspinatus tendon in ro ta tor cu ff tears. They classified 

light micrographs o f normal and injured tendons based on Movin scoring scales (Figure 

2-6 to Figure 2-9).
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Figure 2-6: Hematoxylin and eosin stain of a 
control supraspinatus tendon in a 71-year-old 
man. Fiber structure, 0; fiber arrangement, 0; 

rounding of the nuclei, 0; regional variations in 
cellularity, 1; increased vascularity, 0; 

decreased collagen stainability, 0; hyalinization, 
0. Total score: 1

Figure 2-7: Hematoxylin and eosin stain of 
supraspinatus tendon harvested from the 

intact middle portion of the tendon between 
the lateral edge of the tendon tear and the 
muscle-tendon junction in a 62-year-old 

woman. Fiber structure, 2; fiber arrangement, 
2; rounding of the nuclei, 3; regional 
variations in cellularity, 2; increased 

vascularity, 0; decreased collagen stainability, 
1; hyalinization, 0. Total score: 10

^ « S t !

m iBi

H m

Figure 2-8: Hematoxylin and eosin stain of 
supraspinatus tendon harvested from the intact 

middle portion of the tendon between the 
lateral edge of the tendon tear and the 

musdetendon junction in a 53-year-old man.
Fiber structure, 2; fiber arrangement, 2; 

rounding of the nuclei, 1; regional variations in 
cellularity, 1; increased vascularity, 1; 

decreased collagen stainability, 2; hyalinization, 
0. Total score: 9

Figure 2-9: Hematoxylin and eosin stain of 
supraspinatus tendon harvested from the 

intact middle portion of the tendon between 
the lateral edge of the tendon tear and the 

muscletendon junction in a 59-year-old man.
Fiber structure, 2; fiber arrangement, 2; 

rounding of the nuclei, 1; regional variations 
in cellularity, 2; increased vascularity, 3; 

decreased collagen stainability, 2; 
hyalinization, O.Total score: 12

13
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The variables included in the Bonar scaling method are: (1) tenocytes; (2) ground

Table 2-2: Semi-quantitative scoring (Bonar scale) (Cook, Feller et al. 2004)

Grade 0 1 2 3

Tenocytes Inconspicuous 

elongated spindle 

shaped nuclei with 

no obvious 

cytoplasm at light 

microscopy

Increased 

roundness: nucleus 

becomes more 

ovoid to round in 

shape without 

conspicuous 

cytoplasm

Increased 

roundness and 

Size; the nucleus is 

round, slightly 

enlarged and a 

small amount of 

cytoplasm is visible

Nucleus is 

round, large 

with abundant 

cytoplasm and 

lacuna 

formation 

(chondroid 

change)

Ground substance

(alcian blue and

colloidaliron

stains)

No stainable 

ground substance

Stainable mucin 

between fibers but 

bundles still 

discrete

Stainable mucin 

between fibers 

with loss of clear 

demarcation of 

bundles

Abundant

mucin

throughout

with

inconspicuous

collagen

staining

Collagen (with and 

without polarized 

light)

Collagen arranged 

in tightly cohesive 

well demarcated 

bundles with a 

smooth dense 

bright

homogeneous 

polarization 

pattern with 

normal crimping

Diminished fiber 

. polarization; 

separation of 

individual fibers 

with maintenance 

of demarcated 

bundles

Bundle changes; 

separation of fibers 

with loss of 

demarcation of 

bundles giving rise 

to expansion of the 

tissue overall and 

clear loss of normal 

polarization 

Pattern

Marked 

separation of 

fibers with 

complete loss 

of architecture

Vascularity Inconspicuous 

blood vessels 

coursing between 

bundles

Occasional cluster 

of capillaries, less 

than 1 per 10 high 

power fields

1-2 clusters of 

capillaries per 10 

high power fields

Greater than 2 

clusters per 10 

high power 

fields

14
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substance; (3) collagen; and (4) vascularity. For each variable the score could be 0 

(normal tendon) to 3 (the most abnormal tendon detectable)(Nicola Maffulli 2008). 

Therefore, the total score o f each sample could vary between 0 (normal tendon) and 12 

(the most severe abnormality detectable) (Table 2-2).

Using either the Movin or Bonar method leads to sim ilar results (Nicola Maffulli 2008). 

By using either of these methods, one is capable of quantifying the appearance of 

normal and tendinopathic tendon.

2.2.3 Quantitative characterization

There are some methods to quantify tissue structural properties. Using image 

processing techniques, one could obtain various measurements in images. For example, 

(Parent G, Langelier et al. 2011) measured space between fibers using Vision assistant 

software, (Version 7.1 National Instrument, Austin, TX, USA). They chose three regions 

of interest (ROIs) for each o f the ir microscopic images (OM) and found the spaces 

between the fibers by contrast dividing the objects into 2 categories: fib r il (black), and 

space (red). Space density was calculated by dividing the number o f red pixels by the 

number o f pixels in the image. They also evaluated the mean area o f the spaces, i.e. 

average of the number of connected red pixels using the same software

They have also calculated fib ril density through transmission electron microscopy 

(TEM) and scanning electron microscopy (SEM) images.by chosing three ROIs in each 

image, and finding the fib ril pixels from background pixels using bottom-hat filtering in 

Matlab (Version 7.5, Mathworks, Natick, USA). F ibril density was calculated by dividing 

the number of fib ril pixels by the total number o f image pixels.

2.3 Tendon mechanical properties

The stress-strain diagram in Figure 2-10 shows the mechanical behavior o f ra t tail 

tendons from a study o f (Amoczky, Lavagnino et al. 2007). Although values are 

specified for ra t ta il tendons, the general trends are the same for all kinds o f tendons. As 

can be seen in this figure, the "physiologic range" includes a toe region and part of 

linear region. In this range, collagen fib rils  begin to un-crimp and then they are
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stretched by increasing load. Near the end o f the linear region, isolated collagen fibrils 

begin to fail (Arnoczky, Lavagnino et al. 2007), and stress-strain curve enters to the 

region specified as “overuse injury" region which is the region o f isolated collagen fib ril 

microdamages. In this region, straightening o f collagens is continued and in te rfib rilla r 

sliding and shear between collagen fibrils produces a non-linear load-deformation 

behavior o f the tendon (Arnoczky, Lavagnino et al. 2007). Some collagen fib rils  are 

damaged before others until a complete "tendon rupture" occurs in the last region of 

stress-strain curve (Arnoczky, Lavagnino et al. 2007).

Therefore, collagen fibers properties, the ir crimp structure and their failure level, play a 

significant role in biomechanical behavior o f tendon which are to support and transm it 

tensional load.

Tendon rupture
Stress (M P a) _ Overuse injury

5 - 8%

Physiologic

LinearToe

1 - 3%

0 - 1%

2 6 71 3 5 8 Strain (%)4

Figure 2-10: Stress-strain curve demonstrating the mechanical properties of normal tendon (Arnoczky,
Lavagnino et al. 2007)

A tendon is not a pure elastic material and displays viscoelastic behaviors. I t  has the 

properties of both elastic and viscous material, which means the rate o f loading has an 

effect on tendon behavior. Also, energy is lost during strain-loading, and thus the 

loading and unloading curves w ill not be identical, a phenomenon called "hysteresis".

16
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Two other phenomena originating from viscoelasticity are stress relaxation and creep 

(Margareta Nordin and L. 2001). Stress relaxation is reducing (relaxing) stress under 

constant strain, whereas creep is increasing strain during a constant load. Related 

information w ill be presented in Chapter 3.

Under certain conditions o f loading and tissue quality, tendons also show viscoplastic 

behavior. The tendon is not able to get back to its in itia l length after unloading since it 

undergoes some plastic/permanent deformations. We w ill explain this in further detail 

in Chapter 3.

Up to now, compositional, structural, and mechanical properties o f tendon have been 

introduced since a tendon is a live system which progresses with time, these properties 

can undergo some changes. Some factors which can affect tendon properties are aging, 

diseases, and changes in environmental loading. As mentioned earlier, cells represent 

the active component of tendons, and therefore tendon progression depends on cell 

response to these factors, among which only environmental loading w ill be discussed in 

this thesis. I t  is important to know how cells sense the environmental loading and how 

they respond to it. In the follow ing section, this subject w ill be briefly described.

2.4 Mechanobiology and mechanotransduction

Since many tissue disorders result from mechanical overloading, i t  is very im portant to 

study the relationship between mechanobiological stimulation and tissue progression. 

Mechanobiology discusses these issues. In other words, mechanobiology is the science 

which studies the remodeling o f the tissues in response to physical loading (van der 

Meulen and Huiskes 2002). Tissues are constructed and remodeled by cells. Therefore, 

mechanotransduction is the mechanisms by which loading could be sensed by the cells.

Examples o f mechanotransduction mechanisms are: cell deformation, nucleus 

deformation, cytoskeleton, stretch activated channels, and primary cilium  (Wang 2006). 

Through these mechanisms, mechanical stimulation is converted into biochemical 

signals. Mechanical stimulation, applied to  the ECM can damage i t  I t  can further 

undergo more damages or can be repaired by cellular activity Biochemical signals,
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resulted from converting mechanical stimulation through mechanotransduction 

mechanisms, are detected by cells. Cells can respond differently depending on 

stimulation, they can “repair" tissue by producing and maintaining the collagens 

(Devkota, Tsuzaki et al. 2007; Kjaer, Langberg et al. 2009) or cause "degradation" by 

secreting o f collagen degradable enzymes i.e. proteases (Arnoczky, Lavagnino et al. 

2007; Devkota, Tsuzaki et al. 2007; Cousineau-Pelletier and Langelier 2009). Therefore, 

mechanobiology plays a major role in establishing tissue homeostasis.

Mechanobiology and mechanotransduction w ill be discussed in more depth in Chapter 

3.

2.5 Literature review  of characterization methods

Although mechanical properties play an im portant role in tendon functionality 

(Duenwald-Kuehl, Lakes et al. 2012), compositional, and structural properties are also 

of great value in providing complementary information on tissue quality. In fact, 

compositional, structural, and mechanical properties are in a close relation, therefore, 

studying tendon biomechanical and mechanobiological behavior, not only is im portant 

for characterizing mechanical properties, , but it  is also important for characterizing 

compositional and structural properties.

Tissue quality can take different values depending on the properties o f the tissue. For 

example, tissue could be healthy vs. damaged. It should be noted that tissue quality 

affects the cellular response o f the tissue. This w ill be explained in  Chapter 3.

Investigating tissue quality is important to evaluate tissue progression over time. For 

example, to evaluate the efficiency o f a training protocol we need to compare the tissue 

quality before and after the training. Investigating tissue quality is therefore 

unavoidable for further studies of tendon mechanobiology.

In the following section, literature introducing methods which have been used to 

characterize tissue properties w ill be reviewed.. Presented articles are divided into 

three categories corresponding to the type o f experiment conducted: 1) in vitro  w ith  

live cells, 2) in vitro  w ith  dead cells, and 3) in vivo. For each article, a table which
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summarizes the tissue quality characterization techniques fo r tissue quality is 

presented. The tissue characterization table is divided into three categories: 

mechanical characterization, structural characterization, and compositional 

characterization. Each category, in turn, is divided into tw o subcategories, In the firs t 

subcategory, the conducted test w ill be explained (e.g. in-line, destructive). In the 

second subcategoiy, the information related to data acquired from the conducted test 

w ill be presented. The hypothesis and results of the article are also explained briefly. At 

the end o f this section, a discussion about these techniques is provided.

Some o f the expressions used to describe mechanical tests which m ight be less fam iliar 

to the reader, are defined here:

•  In-line characterization: the mechanobiological experimentation (to examine the 

impact of a loading regime on tissue progression), and characterization testing 

(to determine tissue quality) are conducted in the same apparatus. Therefore, 

the information about tissue mechanical properties are available at regular time 

intervals during the experiment w ithout changing the tissue from one apparatus 

to another.

• Non-destructive characterization: the characterization does not lead to tissue 

damage or failure. Therefore, other characterization tests could be conducted 

after non-destructive characterization.

2.6 In vitro experimentation on tendons with live cells

Article 1. Distributing a fixed amount of cyclic loading to tendon explants over 

longer periods induces greater cellular and mechanical responses (Devkota, 

Tsuzaki etal. 2007)

Hypothesis/Objective:

1. Magnitude: High-magnitude cyclic loading would cause injury, but not low- 

magnitude cyclic loading.
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II. Duration: For a fixed number o f cyclic loading on tendon, the longer the period 

of loading, the greater the mechanical and cellular responses of tendon.

Table 2-3: Summary of characterization tests conducted in this article

Mechanical characterization Structural Compositional

characterization characterization

Test Measured

variable

None Test Analysis

In-line Dynamic strain8 Destructive Hydroxyproline

Non-destructive Stiffness
content assay 

(determining

Dynamic loading collagen content)

Stress-controlled Sulfated GAGs 

content assay 

(determining 

proteoglycan 

content)

Non-destructive Immunoassay kit 

on media 

(determining 

inflammatory 

mediators, PGE2)

Azocolle 

procedure on 

media

(collagenase

content)

In-line Static strain None

Peak -  trough ,
8 Dynamic strain = -----------------------displacement, throughout loading

trough
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Non-destructive

Creep

Stress-controlled

Off-line9

Destructive

Failure

Strain-controlled

Strain at failure

Energy

density10

None

Results

The loading was conducted on two groups and in four regimens. Figure 2-12 shows the 

schematic o f the loading regimens.

• Dynamic and static strain accumulations were larger in "High- 

magnitude/Long-loading" compared to "High-magnitude/Short-loading" 

groups.

•  Static strain accumulation was greater in "Low-magnitude/Long-loading" 

compared to "Low-magnitude/Short-loading” groups. These results show the 

effect o f loading time on the tissue response.

9 Failure test was performed on dead tissues, since the tissues were first frozen (at -9"C) and then thawed.
10 The amount of energy tendons absorb before failing.
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Characterization tests

Mechanical characterization Compositional characterization

2 groups, 4  regimens of loading

High: 12.0 -1 .0  MPa

Short Load (Day 0)

Low: 3.0 -  1.0 MPa

Continuous 24hrs

Long Load (Day 0 - 1 1 )

High: 12.0 -1 .0  MPa

2 hrs/day, 12 days

Low: 3.0 -1 .0  MPa

Figure 2-12: Schematic of the loading and assaying of the tendon

• However fo r dynamic strain, there was no difference between "Low- 

magnitude/Long-loading" and "Low-magnitude/Short-loading" groups. Taking 

into account this result, along w ith  the result from static strain, suggests that 

time is not the only factor affecting tissue response. As it is observed from 

mechanical and compositional analyses, loading magnitude also plays an 

important role in tissue response.

•  The results from failure test did not show a definite effect of cellular response on 

tendon properties. The properties were either tim e dependent or load- 

magnitude dependent but not both. The "High-magnitude/Long-loading" did not 

consistently produce the most in ferio r results expected. The authors suggest the 

effect o f the difference o f cross-sectional areas o f tendons as the reason o f these 

uncertain failure results.
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Article 2. Biomechanical response of collagen fascicles to restressing after 

stress deprivation during culture. (Yamamoto, Kogawa et al. 2007)

Hypothesis/O bjective:

Restressing w ill improve the decreased properties o f fascicles resulting from stress 

shielding.

Table 2-4: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructura l characteriza tion11 C om positional
characteriza tion

Test Measured
variab le

Test Analysis None

Off-line

Destructive

Failure

Strain

controlled

Tangent Modulus 

Tensile strength 

Strain at failure

Destructive 

Microscopy (OM)

Qualification

Quantification 

(crimp angle, 

crimp length, 

wavelength)

Result:

• The decrease o f mechanical properties, represented by tangent modulus and 

tensile strength, was stopped and, in most cases reversed by applying stress 

after stress deprivation but none o f them improved to their normal level.

• Structural characterization results were also consistent w ith  mechanical 

characterization results. The crimp morphology o f fascicles was not recovered to 

original levels, after restressing.

11 Samples were separated for mechanical and structural characterization.
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Article 3. Relative contribution of mechanical degradation, enzymatic 

degradation, and repair of the extracellular matrix on the response of 

tendons when subjected to under- and over- mechanical stimulations in 

vitro. (Cousineau-Pelletier and Langelier 2009)

Hypothesis/Objective:

Investigating the contribution of the three sub-processes o f tendon response (Repair, 

Mechanical degradation, and Enzymatic degradation) when subjected to cyclic 

mechanical loading.

Tendon mechanobiological response (TMR) could be approximated as:

T M R = R - M D -  ED; where

R: Repair, MD: Mechanical degradation, ED: Enzymatic degradation.

Table 2-5: Summary of characterization tests conducted in this article

Mechanical characterization Structural

characterization

Compositional

characterization

Test Measured

variable

Test Analysis None

In-line

Non-destructive 

Cyclic loading 

Strain controlled

Peak to peak 

stress

Destructive

Microscopy (OM, 

TEM12)

Qualification

Quantificatio 

n (fibril 

density)

12 Transmission electron microscopy
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Result:

• In the absence of R and ED, i.e. when TMR is represented by -MD: the results 

from mechanical characterization, showed a fast decrease in peak stresses 

during experimentation time w ithout any increase indicating tendon damage. 

Structural analyses supported mechanical data since they showed loosely 

packed and wavy collagen structure.

• In the absence o f ED, i.e. when TMR is represented by R-MD, the results from 

mechanical characterization showed an overall increase in peak stresses during 

experimentation time indicating tendon improvement. Structural analyses are in 

well correspondence to mechanical results, since they show dense and well- 

oriented collagen structure.

•  In the presence of all three sub-processes, i.e. when TMR is represented by R- 

MD-ED, the results from mechanical characterization showed a decrease o f peak 

stresses after the in itia l increase. Structural analyses were consistent w ith  these 

results since they showed disorganized collagen structure.
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Article 4. Effect of Preconditioning and Stress Relaxation on Local Collagen 

Fiber Re-Alignment- Inhomogeneous Properties o f Rat Supraspinatus 

Tendon13. (Miller KS 2012)

Hypothesis/Objective:

I. The greatest fiber re-alignment w ill occur in the toe-region at ramp-to-failure 

test but some fiber re-alignment w ill also occur during preconditioning.

II. Disorganization in collagen fiber w ill occur during stress-relaxation test.

III. Mechanical properties and in itia l collagen fiber alignment are greater at

midsubstance o f tendon than tendon-to-bone insertion site.

Table 2-6: Summary of characterization tests conducted in this article

Mechanical characterization Structural characterisation Compositional

characterization

Test Measured variable Test Analysis None

In-line

Non-destructive

Preconditioning

Force-

controlled

Grip to grip strain Non-destructive

OM with polarized 

light

Quantification 

(changes in 

collagen fiber 

re-alignment)

In-line

Non-destructive

Stress

relaxation

Strain-

controlled

Force

13 There is no certain reference in the article whether they worked on live or dead tissues.
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In-line

Both destructive 

and non

destructive

Ramp-to-Failure

Strain-

controlled

Stiffness 

Strain at failure 

Stress

Result:

• The greatest fiber re-alignment occurred during preconditioning and then at toe- 

and linear regions o f the ramp-to-failure tes t

•  No collagen fiber re-alignment observed during stress-relaxation test.

•  Lower moduli, more disorganizations and higher strains at insertion site than 

tendon midsubstance indicate that mechanics and structure o f the tissue differ at 

different tissue locations, i.e. the tissue is not homogeneous.
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2.7 In vitro experimentation on tendons w ith  dead cells

In this type o f experiments, i.e. tendon w ith  dead cells, the biomechanical behavior of 

tendon is related to ECM since the ECM remodeling by the cells is avoided here.

Article 1. Low Stress Tendon Fatigue is a Relatively Rapid Process in the Context 

of Overuse Injuries. (Parent G, Langelier et al. 2011)

Hypothesis/Objective:

I. Damage progression o f tendons, even w ith  low  stress, is a rapid process.

II. Compliance amplitude increases w ith  increasing injury.

III. Damage progression affects collagen network.

Table 2-7: Summary of characterization tests conducted in this article

Mechanical characterization Structural characterization Compositional

characterization

Test Measured

variable

Test Analysis None

In-line

Non-destructive

Cycling

Stress controlled

Dynamic

compliance

Mean Strain

Destructive

Microscopy (OM, 

TEM, SEM14)

Qualification

Quantification 

(Fiber density)

14 Scanning electron microscopy
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Result:

•  Strain increased w ith  increasing levels of fatigue.

•  Compliance decreased at the beginning. Thereafter, i t  increased w ith  increasing 

fatigue levels.

• Structural characterization also showed disorganization o f the collagen 

structure, another evidence o f mechanical degradation.

• These results support the hypothesis that mechanical degradation o f tendon is a 

very fast process even at low  stresses.
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Article 2. Sub rupture Tendon Fatigue Damage. (Fung, Wang et al. 2009) 

Hypothesis/O bjective:

Characterizing the changes in the mechanical and micro-structural properties o f tendon 

at controlled fatigue levels.

Table 2-8: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructu ra l

characteriza tion

C om positional

cha racteriza tion

Test Measured

variab le

Test Analysis None

In-line

Destructive

Cycling

Stress controlled

Calmp-to-clamp

strain

Stiffness

Hysteresis

Destructive

Microscopy (OM,

confocal

microscopy)

Qualification

Quantification 

(damage area 

fraction15)

Result:

•  Strain increased significantly w ith  increasing levels o f fatigue even at lower 

fatigue levels. Therefore, clamp-to-clamp strain is an appropriate indicator o f 

damage from early to late fatigue.

•  Changes in stiffness and hysteresis were significant only at higher levels of 

fatigue.

•  Structural analyses also showed disorganization in collagen structure w ith  

increasing fatigue levels.

15 number of the pixels with tissue deformity as a percentage of number of pixels of total area
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• Therefore both mechanical and m icrostructural characterization showed 

degradation in tendon properties through fatigue levels which are a result of 

accumulation o f micro-damages.
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Article 3. Corticosteroid administration alters the mechanical properties of 

isolated collagen fascicles in rat tail tendon. (Haraldsson, Aagaard et al.

2009)

Hypo thesis/O bjective:

Injecting corticosteroid reduces biomechanical properties o f collagen fascicles.

Table 2-9: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructu ra l

characteriza tion

C om positional

characteriza tion

Test Measured

variab le

None None

In-line Yield stress

Destructive Peak stress

Failure Stiffness

Strain controlled Strain at failure

Result:

•  The mechanical characteristics o f corticosteroid-treated tendons decreased 

since the results showed lower yield stress, peak stress, and stiffness, in treated 

tendons compared to control group.

• The strain at failure remained constant between these groups.
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2.8 In vivo experimentation

Article 1. Early response to tendon fatigue damage accumulation in a novel in 

vivo model. (Fung, Wang et al. 2010)

Hypothesis/Ob j ective:

A fatigue-damaged tendon response differs from a lacerated tendon healing response.

Table 2-10: Summary of characterization tests conducted in this article

Mechanical characterization Structural

characterization

Compositional

characterization

Test Measured

variable

Test Analysis Test Analysis

In-line

Non-destructive

Cycling

Force controlled

Peak cyclic 

strain

Stiffness

Hysteresis

Destructive

Microscopy

(confocal

microscopy)

Qualification Destructive Reverse 

transcription 

PCR (Collagen I, 

III, V mRNA 

expression)

Result:

• Mechanical characterization results demonstrated that stra in increased w ith  

increasing tissue fatigue levels. This is consistent w ith  expected changes o f strain 

in damaged tendon from other studies and also w ith  structural characterization 

results from this article (Figure 2-13).
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Figure 2-13: The changes of strain and stiffness during different levels of fatigue loading. As it can be 
viewed in the figure, strain always has an increasing pattern [at low, moderate and high fatigue levels), 
while stiffness increases at low level, remains almost constant at moderate level, and decreases at high

level of fatigue (Fung, Wang et al. 2009)

•  On the other hand, changes in stiffness and hysteresis do not fo llow  a monotonic 

pattern (Figure 2-13 and Figure 2-14)

•  Stiffness increased and hysteresis decreased at low and moderate fatigue levels.

• Only at high-level fatigue, changes in stiffness and hysteresis were consistent to 

damaged tendon properties. (Figure 2-13 and Figure 2-14)
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Figure 2-14: changes in stiffness and hysteresis do not show a monotonic manner. Only at high- 
fatigue level their changes are consistent to expected changes in damaged tendon (Fung, Wang et

al. 2009).

Structural characterization and compositional characterization revealed the 

degradation in tendon:

> Microscopy images showed collagen structure damage and disorganization 

increasing w ith  increasing damage.

>  Collagen I, III, V mRNA expressions altered at all fatigue levels.

•  Results are inconsistent w ith  healing response of the lacerated tendon.
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Article 2. Coordinate regulation oflL-1 0 arid MMP-13 in rat tendons following 

subrupture fatigue damage. (Sun, Li et al. 2008)

Hypothesis/O bjective:

Overloaded tendon induces a tendinopathy and alters gene expressions in a load- 

dependent manner.

Table 2-11: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructu ra l

characteriza tion

Com positional

characteriza tion

Test Measured

variab le

Test Analysis Test Analysis

In-line

Non-destructive

Cycling

Force controlled

Peak to peak 

strain

Destructive

Microscopy

(confocal

microscopy)

Qualification Destructive Reverse 

transcription 

PCR (mRNA 

analysis of MMP- 

13, and IL-10)

Western blot 

(protein analysis 

of MMP-13, and 

IL-1 0}

Result:

•  The results demonstrated that tendon structural damage and changes in gene 

expression o f MMP-13, and IL-1 0 are distinctly different between low- and 

moderate- level fatigue loadings.

36



www.manaraa.com

Article 3. Exposure dependent increases in IL-10, Substance P, CTGF and 

tendinosis in flexor digitorum tendons with upper extremity repetitive strain 

injury. (Fedorczyk, Barr et ai. 2010)

Hypothesis/Objective:

I. Tendons undergo inflammation earlier than other degenerative changes, when it 

is subjected to high repetitive high force (HRHF) tasks.

II. Both responses o f tendons, i.e. inflammation and degenerative changes, are 

exposure-dependent, i.e. the longer the HRHF task and the higher demand tasks, 

the greater tissue response.

III. Inflammatory and neurochemical changes in tendons are related to declines in 

grip strength.

Table 2-12: Summary of characterization tests conducted in this article

Mechanical

characterization

Structural

characterization

Compositional

characterization

Test Measured

variable

Test Analysis Test Analysis

In-line

Non-
>

destructive

Cycling

Force-

controlled

Grip strength 

(MPF16)

Destructive

Microscopy

(OM)

Qualification

Semi-

Quantification 

(modified 

Bonar scale 

method)

Destructive ELISA (measuring IL- 

10)

Immunohistochemistry

Quantification (changes 

in IL-1 0, and substance 

P)

16 Maximum pulling force
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Result:

•  Mechanical characteristic o f tendon, represented by grip strength, underwent an 

early decrease.

•  At the same time as change in grip strength, there was an increase in substance 

P, and IL-1 E cells.

•  There was a later increase in macrophages, neutrophils, connective tissue 

growth factor (CTGF), and periostin like factor (PLF) fibroblasts.

• Structural changes occurred at the time o f increasing macrophages, neutrophils, 

CTGF, and PLF fibroblasts.

•  It is suggested that the early increase o f 1L-1S, which plays a role in in itia ting 

fibroblast proliferation and degenerative tendon changes, caused later 

degenerative changes.

2.9 Summary and concluding rem arks

There are several techniques to characterize tissue quality. Among these techniques, 

some are destructive and others are non-destructive. Structural and compositional 

characterizations are usually referred to as destructive (e.g. OM, TEM, analysis of tissue 

protein content) although there are also some non-destructive techniques (e.g. culture 

media analysis). For mechanical characterization, there are also destructive tests (e.g. 

failure test) and non-destructive tests (e.g. low amplitude stress relaxation or creep 

tests).

All these characterization tests provide the complementary information to better 

understand tissue quality since compositional, structural and mechanical properties are 

interrelated. In fact, by perform ing more o f these characterization tests, more aspects of 

tissue quality w ill be clarified.

In our view, in-line non-destructive tests should be prioritized over other mechanical 

characterization methods. In-line tests enable the monitoring of tissue progression
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during experiments. Therefore, for experiments investigating tissue properties at 

regular time intervals, information at each time point could be extracted from the same 

sample, and there is no need to replicate the experiment at each time point using 

different samples. Moreover, since the stimulation and characterization are performed 

in the same apparatus, the risk of contamination, damage, and also the risk of reference 

loss (e.g. loss o f in itia l tissue length) resulted from  transferring the sample from one 

apparatus to another is eliminated (Mathieu Viens, Guillaume Chauvette et al. 2011).

Non-destructive tests during the experiments provide the opportunity to apply other 

compositional and structural analysis or failure test at the end of the experiment since 

the tissue is not damaged. Therefore, complementary information can be obtained. In 

addition, in non-destructive tests samples can be self-compared, thus, data accuracy is 

increased. Moreover, the number o f samples and animals is decreased. However, i t  is 

worth noting that very few studies perform non-destructive tests, as destructive tests 

can provide some information which could not be achieved in  non-destructive tests like 

load-to-failure and strain-at-failure.

Although in-line non-destructive tests can be beneficial to gather information, on all 

aspects of tissue quality, there are still concerns about whether these tests w ill affect or 

not the experimental results. In fact, even i f  they are conducted using physiological 

parameters, they could affect tissue mechanobiological response. Up un til now, this 

domain has been poorly investigated. In fact, we d id not find studies performed on this 

topic.

One factor which could have an effect on experimental results is using diagnostic tests 

instead o f stimulation protocols to provide information fo r evaluating tissue properties. 

We investigated this factor in this Master's pro ject Using diagnostic tests has the 

advantage o f defining a "reference standard" to evaluate tissue properties in all 

experiments. Therefore, the data between different experiments could be compared 

more reliably. But as mentioned, there is a concern that behavior o f the tissue could be 

affected by diagnostic tests. In Chapter 4, we demonstrate that the diagnostic test
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conducted to observe tissue quality at regular time intervals has an effect on tissue 

progression over time.

This arises from viscoelasticity and viscoplasticity behaviors of tissue. In chapter 3 

(review article) this subject w ill be discussed w ith  a in-depth look into it.
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3. Viscoelasticity and viscoplasticity o f fibrous load-bearing  

tissues influence tissue mechanobiological response

3.1 Avant-propos

Auteurs: Leila Jafari et Eve Langelier

A ffilia tio n : PERSEUS Research Group, Mechanical Engineering Department, Universite 

de Sherbrooke, Sherbrooke, Quebec, Canada

Date de soumission: 4 April 2012

Revue: Connective Tissue Research

T itre  en fra n ca is : La viscoplasticite et la viscoelasticite des tissus supportant des 

chargements influencent la reponse mecanobiologique tissulaire

Resume fra n ca is :

Meme si les blessures affectant les tissus fibreux supportant des chargements, comme 

les tendons, ligaments, capsules et fascias, sont frequentes, il n'y a actuellement aucun 

traitement qui resulte en une guerison optimale de ces tissus. La mecanobiologie, ce 

domaine de recherche qui examine la reponse des tissus vivants aux stimuli 

mecaniques, serait la cause de plusieurs de ces blessures et pourra it contribuer 

significativement au developpement de strategies pour une prevention et une guerison 

optimales. Toutefois, la litterature ne comporte pas encore de description de la fa^on 

dont la reponse des tissus aux stimuli biophysiques est affectee par la viscoelasticite et 

la viscoplasticite, deux comportements cles des tissus fibreux supportant des charges. 

Le principal objectif de cette revue est d'expliquer ces comportements, ainsi que leurs 

effets sur la reponse des tissus aux stimuli mecaniques, puisque ces concepts doivent 

etre compris et consideres par les chercheurs dans leur quete vers des traitements 

optimaux bases sur la mecanobiologie. Dans cet article, nous faisons une revue des 

connaissances et des hypotheses actuelles expliquant 1’origine de la viscoelasticite et de 

la viscoplasticite dans les tissus fibreux supportant des chargements. Nous decrivons la
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dynamique competitive entre la reparation, la degradation enzymatique et la 

degradation mecanique, qui dependent de la qualite du tissu, de meme que de la 

viscoelasticite et la viscoplasticite. Finalement, nous presentons differents parametres 

de stimulation qui influencent la reponse des tissus vivants supportant des 

chargements aux stim uli mecaniques a cause de leur viscoelasticite et de leur 

viscoplasticite. Cette analyse pourra it avoir des implications significatives pour les 

etudes in vitro en bioreacteur sur la pathophysiologie et le genie tissulaire fonctionnel, 

de meme que pour les applications cliniques in vivo.
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3.2 Abstract

Although injuries occur frequently in fibrous load-bearing tissues, such as tendons, 

ligaments, capsules and fasciae, there are currently no treatments that result in optimal 

healing. Mechanobiology, the field o f research into the response of live tissues to 

biophysical stimuli, lies behind many o f these injuries and may potentia lly provide a 

significant contribution to the development o f optimal prevention and healing 

strategies. However, the literature does not yet contain descriptions o f how tissue 

response to biophysical stimuli is affected by viscoelasticity and viscoplasticity, two key 

behaviors of fibrous load-bearing tissues. The main objective of this review is to explain 

these behaviours, as well as the ir effects on tissue response to  mechanical stimuli, since 

these concepts must be understood and accounted for by researchers in the ir quest for 

optimal treatments based on mechanobiology. In this paper, we review the current 

knowledge and hypothesis behind the origins o f viscoelasticity and viscoplasticity in 

fibrous load-bearing tissues. We describe the dynamic competition between repair, 

enzymatic degradation and mechanical degradation o f the extracellular matrix, which 

depends on tissue quality, as well as tissue viscoelasticity and viscoplasticity. Finally, 

we present different stimulation parameters influencing the response o f live fibrous 

load-bearing tissues to biophysical stim uli because of viscoelasticity and viscoplasticity. 

This analysis may prove to have significant implications fo r bioreactor studies involving 

pathophysiology and functional tissue engineering, as well as fo r in vivo clinical 

applications.

Key words: Tendon, Ligament, Extra-cellular matrix. Stress relaxation, Creep, 

Mechanotransduction, Biophysical stimuli, Repair, Mechanical degradation, Enzymatic 

degradation, Tissue adaptation, Bioreactor, Rehabilitation, Tissue engineering
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3.3 Introduction

Lesions to fibrous load-bearing tissues (FLBT), such as tendons, ligaments, capsules or 

fasciae, occur frequently in sports and occupational activities. Despite a high incidence 

of lesions, there are as yet no optimal treatments. Therefore, promoting native tissue 

healing, optim izing rehabilitation procedures and improving engineered tissues all 

constitute significant issues. To this end, researchers currently harbour high 

expectations o f strategies based on mechanobiology.

Mechanobiology is the field emerging from mechanics and biology in studying how live 

tissues are produced, maintained and adapted by cells in  response to biophysical 

stimuli (van der Meulen and Huiskes 2002). Mechanotransduction is at the heart of 

mechanobiology; it  is the process of converting biophysical stimuli into biochemical 

signals at the cellular level (Wang 2006). I t  enables cells to "sense" applied biophysical 

stimuli (Wang 2006).

The response o f FLBT to biophysical stim uli is governed, in part, by tissue 

viscoelasticity and viscoplasticity. Because o f these tw o macro-mechanical behaviours, 

the type of stimulus (strain- or stress-controlled stimulus), the stimulus history and the 

use of recurring non-destructive mechanical tests for tissue quality characterization can 

influence tissue response. Thus, when dealing w ith  FLBT response to biophysical 

stimuli, researchers cannot overemphasize the importance o f considering tissue's 

viscoelasticity and viscoplasticity. They must understand and consider these macro

mechanical behaviours when selecting the most optimal stimulus and designing 

exercise-based treatment strategies.

The goal o f this review is to introduce the inter-disciplinary community o f researchers 

interested in FLBT mechanobiology (biologists, engineers, orthopaedists, etc.) to the 

impacts of viscoplasticity and viscoelasticity on tissue response to biophysical stimuli. 

First, we propose to brie fly summarize the composition and structure o f FLBT and then 

to review the current knowledge and assumptions explaining the origin of 

viscoelasticity and viscoplasticity in FLBT. Using a block diagram representation, we 

w ill deconstruct the live tissue response to biophysical stim uli into the components of
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extracellular matrix (ECM) response and live cell response. This w ill lead to an 

explanation o f the dynamic competition between the repair and degradation 

(mechanical and enzymatic) o f the ECM, which in turn  depends on tissue quality, 

viscoelasticity and viscoplasticity. Finally, we w ill discuss the influence o f the 

aforementioned tissue mechanical behaviours on in vitro  bioreactor studies and in vivo 

clinical applications. The explanations contained herein are based on the scientific 

literature.

Please note that this paper is aimed at an inter-disciplinary community o f researchers. 

Therefore, a number o f technical words or expressions used throughout this paper are 

defined in the Appendix to facilitate comprehension by readers from  all research and 

practice backgrounds.

3.4 The composition and structure of FLBT

Throughout this paper, FLBT w ill be regarded as involving two main components: 1) an 

inert component made up o f the ECM and 2) an active component constituted by the 

cells. FLBT are relatively hypocellular, as cells occupy only approximately 20% o f the 

volume o f tissue in tendons and ligaments (Nordin and Frankel 2001);(0atis 2009). 

Therefore, i t  is reasonable to assume that the ECM provides the tissue's macro

mechanical behaviour.

The ECM contains approximately 60%-80% water and 20%-40% solids (Nordin and 

Frankel 2001) but these quantities vary w ith  species (Vogel 1991), anatomical site 

(Amiel, Frank et al. 1984; Nordin and Frankel 2001; Keyoung Jin Chun 2003; Wang 

2006), tissue types (Amiel, Frank et al. 1984) and age (Elliott 1965; Kleiner 1998; 

Nordin and Frankel 2001), in ter alia. The ECM is a biopolymer, i.e. an interlaced 

network composed o f three main categories of molecules: collagen, elastin and ground 

substance. (Please note that describing these molecules goes beyond the scope o f this 

review. To that end, the reader may refer to the many available books and review 

articles.) The interactions among molecules of the same type, molecules o f different 

types, as well as the ir interactions w ith  water, dictate FLBT macro-mechanical 

behaviour.
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3.5 Viscoelasticity and viscoplasticity of FLBT: O rigin and

manifestations

In order to study FLBT mechanobiological response, tissues are subjected to 

macroscopic biophysical stimuli. Under these biophysical stimuli, FLBT exhibit 

viscoelasticity or viscoplasticity. This section explains how the composition and 

structure o f FLBT are at the heart o f viscoelasticity and viscoplasticity. The 

manifestations of these macro-mechanical behaviours are also examined here.

3.5.1 Knowledge and assum ptions behind the o rig in  o f  FLBT m acro-m echanical 

behaviour

Given the combination o f biopolymers and water described above, the ECM in FLBT 

shows time-dependent (viscous) macro-mechanical behaviour w ith reversible (elastic) 

or non-reversible (plastic) deformation under biophysical stimuli, depending on the 

situation. Explanations proposed for these important behaviours are as follows:

V iscosity in the ECM could originate in part from the proposed mechanism o f frictional 

losses related to flu id flow  through the ECM (Sander and Nauman 2003). Another 

possible mechanism is frictional losses associated w ith  the relative motion o f ECM 

collagen structures as they pass by each other (Sander and Nauman 2003; Screen 

2008). Because o f viscosity, ECM mechanical behaviour is time-dependent, meaning 

that it  is affected by loading rate and loading history. In FLBT, viscosity is combined 

w ith  elasticity or plasticity:

E lastic ity o f the ECM could arise mainly from  reversible extension o f collagen units. 

First, at very low  levels o f loading, collagen fibres lose the ir waviness through the 

processes o f straightening or uncrimping (V iid ik 1972; Hansen, Weiss et al. 2002). 

Then, w ith  increased loads, collagen helices (tropocollagens) begin to stretch (M osier, 

Folkhard et al. 1985). Sliding o f collagen units past each other is another mechanism 

explaining FLBT extension (Screen HR 2004). Since the uncrimping o f collagen fibres 

and the stretching o f helices are reversible processes Q6zsa LG 1997), and since the
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sliding o f collagen units can be completely reversible under certain conditions [Screen 

HR 2004), the tissue shows viscoelastic behaviour.

P lastic ity  o f the ECM occurs at higher levels of loading, fo r example, during a rupture 

test in vitro  (Screen HR 2004; Oatis 2009)and w ith  in vivo trauma (Nordin and Frankel 

2001; Magee, Zachazewski et al. 2007). It also occurs after a higher number o f lower 

loading repetitions, for example during an in v itro  fatigue test (Wang, Ker et al. 1995; 

Wren, Lindsey et al. 2003; Thornton GM 2007; Fung, Wang et al. 2009; Fung, Wang et al. 

2010; Parent G 2011), in vivo stretching (Kisner C 2007), and possibly during the 

development o f overuse injuries (Magee, Zachazewski et al. 2007; Woo SL-Y 2007). This 

phenomenon could be explained through a non-reversible process o f sliding between 

collagen units (Knorzer E 1986), a decrease in the amount o f intramolecular bonds or 

through micro-damage to the ECM (Fung, Wang et al. 2009; Parent G 2011). The FLBT 

are then said to be viscoplastic.

Viscoelasticity and viscoplasticity both depend on variables relating to ECM quality, 

such as hierarchical structure, water content, noncollagenous ECM component content, 

and enzymatic and nonenzymatic cross-linking:

H ierarch ica l s tructu re : A study by Gupta et al. (Gupta, Seto et al. 2010)showed that 

changes in tendon viscoelastic behaviour correlates w ith  structural changes at the fibre 

and fib ril levels.

W ater content: Studies observed that tissue strength reduces w ith  an increased 

hydration in tendon fascicles (Screen, Shelton et al. 2005; Screen, Chhaya et al. 

2006)and that creep (time-dependent strain under stress; Figure 3-1) decreases w ith  a 

decreased hydration in ligaments (Thornton, Shrive et al. 2001).

Noncollagenous ECM com ponent content: Using decorin knockout mice, larger and 

faster stress relaxations (time-dependent stress under strain; figure 3-1) were 

observed in the absence o f decorin (Elliott, Robinson et al. 2003). Moreover, tendon 

fascicles from which glycosaminoglycans were removed using the enzyme
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chondroitinase ABC exhibited an increased maximum modulus, compared w ith  freshly 

extracted fascicles (Screen, Chhaya et al. 2006).

Cross-linking: It is recognized that collagen cross-linking prevents molecule sliding 

and increases tissue stiffness (DeGroot 2004; Avery and Bailey 2005).

Finally, it  is w orth  noting that, over a lifetime, changes in the viscoelasticity and 

viscoplasticity of FLBT occur, depending on various life stages or events, such as 

maturation (Lam, Frank et al. 1993), ageing (Nielsen, Skalicky et al. 1998), in ju ry  

(Dourte, Perry et al. 2010), healing (Frank, Hart et al. 1999; Abramowitch, Woo et al. 

2004) or immobilization (Eliasson, Fahlgren et al. 2007), all o f which affect the ECM 

quality (Jozsa LG 1997).

Dynamic biophysical stimuliStatic biophysical stimuli 
Strain-controlled Stress-controlled Strain-controlled Stress-controlled

o .

8- °O -r; Dynamic
creep

;; Dynamic 
stress

/ \  • ■ re laxationStress
relaxation

Creep

Figure 3-1: Comparison of the manifestations of linear elasticity of materials and 
viscoelasticity/viscoplasticity of FLBT under static and dynamic stimuli, e is strain; tris stress; t  is time

and At is time delay
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3.5.2 Manifestations of viscoelasticity and viscoplasticity for ECM under 

biophysical stimuli

In order to appreciate the impact o f the ECM's macro-mechanical behaviour on the 

mechanobiological response o f live tissues, we must firs t highlight the differences 

between the manifestations o f elasticity, viscoelasticity and viscoplasticity of inert 

materials (tissues w ithout live cells) when they are submitted to strain- or stress- 

controlled biophysical stimuli.

Materials react d ifferently to loading, depending on the ir macro-mechanical behaviour, 

as shown in Figure 3-1. A linear elastic material follows Hook's law: <y= Ee, where cris 

stress, E is Young's modulus and e is strain. Thus, the ra tio  a/e is constant over time 

w ith both static and dynamic stimuli (Figure 3-1, 1: la  vs lb ;  2a vs 2b; 3a vs 3b; 4a vs 

4b).

A viscoelastic material shows a time-dependent reaction to  load. As a consequence, 

when subjected to constant strain input, the resulting output is stress relaxation (e = 

f(o,t)) (Figure 3-1: la  vs lc )  and when subjected to constant stress the output is creep 

(a=f(e,t)) (Figure 3-1: 2a vs 2c). In vivo, stress relaxation and creep can be experienced 

during static stretching. Stress relaxation occurs for example when one keeps a 

stretching position constant and feels the stretching sensation decreasing w ith  time. 

Creep occurs when a stretching force is maintained constant by adjusting one's position 

over time.

When subjected to dynamic stimuli, the ECM of FLBT shows a tim e delay between 

stimulation and response (Figure 3-1: 3a vs 3c; 4a vs 4c). Moreover, because o f time- 

dependence, the output resulting from  dynamic strain input is dynamic stress 

relaxation (Figure 3-1: 3a vs 3c) and the output from dynamic stress input is dynamic 

creep (Figure 3-1: 4a vs 4c).

Dynamic stress relaxation (Figure 3-1: 3c) and dynamic creep (Figure 3-1: 4c) can be 

explained by incomplete recovery o f the tissue's mechanical properties between two
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successive loading cycles. Incomplete recovery, in turn, can be explained by two 

mechanisms:

1) The viscous phenomena have different time constants during tissue loading and 

unloading phases. For example, in figure 3-2, tissue lengthening is driven by the 

apparatus during the loading phase o f a strain-controlled stimulus. However, 

during the unloading phase, tissue shortening is driven by the tissue itself. This 

may require more time than allowed by the stimulation protocol.

2) During loading, the tissue’s quality changes (tem porarily or permanently) as 

water is exuded, collagen fib rils  slide against each other, the collagen structure is 

damaged, proteoglycans are lost, etc. These changes in tissue quality im ply that 

changes (temporary or permanent) occur in mechanical properties and in  the 

time constant fo r viscous phenomena.

I Anchors

■
In c o m p le te

re c o v e ry

L o a d in g
p h a s e

U n lo a d in g
p h a s e

Time

Figure 3-2: Dynamic stress relaxation during a strain-controlled dynamic test Incomplete recovery of 
tissue length and mechanical properties at the end of the unloading phase leads to reduced peak stress at 

the end of the next loading phase. (Please note that changes were emphasized in the figure to facilitate 
conceptualization. However, in reality, changes may be more subtle, as they may occur microscopically,

such as in molecular rearrangement).
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Alternating s tim u li/rest periods also highlight a difference between the behaviours of 

elastic materials and viscoelastic/viscoplastic FLBT (Figure 3-3). For example, periods 

of dynamic loading under strain control can be alternated with rest periods. In FBLT, 

stress level decreases during stimulation periods and recovers during rest periods 

(Figure 3-3a). However, i f  the rest periods are too short (Solomonow, He Zhou et al. 

2000; Solomonow 2004)(Figure 3-3b-c) or i f  plasticity has occurred in the ECM, stress 

recovery may be hindered.

Finally, i t  is worth noting that both static and dynamic creep can lead to rupture if  

maintained over a long enough period (Wang and Ker 1995; Wang, Ker et al. 1995; 

Wren, Lindsey et al. 2003; Thornton GM 2007; Fung, Wang et al. 2009; Parent G 2011). 

Dynamic creep apparently increases faster than static creep (Thornton, Shrive et al. 

2001).

a) rest rest 
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b) IlftaH
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i «
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g © <D

Figure 3-3: Impact of rest periods on the manifestation of material viscoelasticity/viscoplasticity under 
strain-controlled dynamic stimuli. When rest periods are too short (b and c), the overall stress level 

experienced by the ECM decreases, a  is stress and t is time. Double-headed arrows indicate rest periods. 
(Adapted from Viens et al. (2011) ASME Journal o f Medical Device with permission).
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3.6 Live FLBT response to biophysical stim uli

The global response o f live FLBT to biophysical stim uli is complex. To facilitate 

understanding, the follow ing sections deconstruct the tissue response into the separate 

components o f ECM micro-mechanical and cellular responses, and then bring them 

back together in order to address the global tissue response.

3.6.1 ECM response under biophysical stimuli

Under macroscopic biophysical stimuli, the molecules that make up the ine rt ECM are 

subjected to stress and strain and could thus undergo mechanical degradation (MD), as 

would many conventional polymers under sim ilar mechanical loading conditions (Ward 

1983) (Figure 3-4 in blue). One example o f MD is mechanical fatigue, which affects 

tissue quality X over time (and thus implies a time rate of change of tissue quality X md) 

when the ECM is submitted to dynamic biophysical stimuli. LBFT fatigue can occur due 

to repetitive activities at w ork or in sports. Another example of MD is partial or 

complete rupture o f the ECM when it  is subjected to excessive stress, such as in trauma. 

ECM plasticity is a manifestation o f MD due to m icrostructural changes in the ECM and 

its components (Fung, Wang et al. 2009; Parent G 2011).

Research on the MD process affecting the ECM under stress-controlled dynamic stim uli 

has generally shown that the ECM strain adopts a triphasic shape over tim e since strain 

always increases but at different rates over time (Wang, Ker et al. 1995; Wren, Lindsey 

et al. 2003; Thornton GM 2007; Fung, Wang et al. 2009; Fung, Wang et al. 2010; Parent 

G 2011) (Figure 3-5 a). Compliance (the inverse o f stiffness) changes in a U-shaped 

curve over time (Parent G 2011), meaning that compliance firs t decreases and later 

increases over time (Figure 3-5 b). Depending on the study, stiffness either decreases 

over time (Wang, Ker et al. 1995; Wren, Lindsey et al. 2003), or changes in an inverse-U 

curve (Fung, Wang et al. 2009; Fung, Wang et al. 2010) meaning that stiffness firs t 

increases and later decreases over time (Figure 3-5 b). This corresponds to the 

compliance observations. Both the time rate o f change of strain (Wang, Ker et al. 1995;
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Wren, Lindsey et al. 2003; Fung, Wang et al. 2009; Fung, Wang et al. 2010; Parent G 

2011) and

Tissue quality (ECM)

T issue
q u a lityM acroscopic

b iophysica l
s tim u li

In e rt ECM

M D

In e rt ECM
M icroscop ic
b iophysica l

s tim u li

B iochem ica l
s ig na ls

R  &  ED

Stimuli reduction Mechanctransduction

Tissue quality (calls)

Figure 3-4: Block diagram representation of the mechanobiological response of FLBT under biophysical 
stimuli including the impact of viscoelasticity/viscoplasticity. In blue: Under macroscopic biophysical 

stimuli, the inert extracellular matrix (ECM) undergoes mechanical degradation (MD) which affects the 
time rate of change of tissue quality (>0. In green: The ECM reduces the macroscopic stimuli applied to 

the tissue as a whole into microscopic stimuli detected by the cells. This process is called 
mechanotransduction. The resulting biochemical signals instruct the cells to repair (R) or use enzymatic 

degradation (ED) on the ECM, which again affects X. In red: As the tissue progresses in response to 
stimuli, its quality X changes. Thus, the microscopic stimuli, biochemical signals, R, ED and MD also 

progress, as illustrated by the tissue quality feedback. In orange: Because of viscoelasticity and 
viscoplasticity, the microscopic stimuli sensed by the cells change over time, even though the 

macroscopic biophysical stimuli remain constant The spring and dashpot model used to represent these 
macro-mechanical behaviours in the block diagram refers to the widely used Zener model in linear

viscoelasticity.

the time rates o f change o f compliance and stiffness [Wang, Ker et al. 1995; Wren, 

Lindsey et al. 2003; Fung, Wang et al. 2009; Fung, Wang e t al. 2010; Parent G 2011) 

accelerate before rupture. Under strain-controlled stimuli, however, the peak stress 

decreases nonlinearly over time (Figure 3-5 c)(Cousineau-Pelletier P 2009).

From a micro-structural point o f view, the ECM of tendons (w ithout cellular activity) 

subjected to stress-controlled dynamic stimuli exhibit histological alterations in the 

collagen network, increasing nonlinearly w ith  fatigue levels (Elliott, Robinson et al. 

2003; Wren, Lindsey et al. 2003; Parent G 2011), and developing in a non-uniform
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fashion over the tendon (Fung, Wang et al. 2009; Parent G 2011). From a macro- 

structural point o f view, tendon diameter increases w ith  damage (Lanir, Salant et al. 

1988).

3.6.2 Cellular response to biophysical stimuli

The pathway relating macroscopic biophysical stim uli to cellular response is illustrated 

in Figures 3-4 (in green) and 3-A-l. First, macroscopic stim uli on the tissue are reduced 

to microscopic stim uli detected by the cells, as illustrated by the magnifying glass. The 

ECM acts as a transfer function converting macroscopic biophysical stim uli into 

microscopic stimuli: flu id flow  (Butler, Kohles et al. 1997; Sander and Nauman 2003), 

ion and molecule movements and gradients (Grodzinsky 1983), pressure gradients 

(Haemer, Carter et al. 2012), as well as stress and strain in the ECM which affect the 

individual cells (Matyas, Edwards et al. 1994; Arnoczky, Lavagnino et al. 2002; Screen 

HRC 2003; Upton, Gilchrist et al. 2008; Gupta, Seto et al. 2010; Lai and Levenston 2010). 

Then, these microscopic stim uli are sensed by the cells through different mechanisms 

including membrane proteins, the cytoskeleton, stretch activated channels, and prim ary 

cilia as presented in different review articles (Wang 2006; Janmey and McCulloch 2007; 

Wang, Thampatty et al. 2007; Wang N 2009). These mechanisms transform the 

microscopic stimuli into biochemical signals that are detected by the cells, a process 

called "mechanotransduction". In response to these biochemical signals, the live cells 

can react through repair (R) o f the ECM via the secretion and assembly o f molecules 

such as collagen (Kjaer, Magnusson et al. 2006; Devkota, Tsuzaki et al. 2007; Kjaer, 

Langberg et al. 2009), or enzymatic degradation (ED) o f the ECM by means of 

production and activation o f proteases such as matrix metalloproteinases (MMPs) 

(Arnoczky SP 2007; Devkota, Tsuzaki et al. 2007; Cousineau-Pelletier P 2009). 

Moreover, i f  the magnitude and duration o f the microscopic stimuli are too high, the 

cells may undergo apoptosis, a programmed cell death, as a result o f activation of 

intracellular stress-activated protein kinases (Yuan, Wang et al. 2003). I f  the magnitude 

and duration o f the microscopic stim uli are too low, cells may also undergo apoptosis 

(Woo SL-Y 2007).
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Input: Stress-controlled dynamic stimuli

Time
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Figure 3-5 : Manifestation of material viscoelasticity/viscoplasticity under dynamic stimuli. (A) Under 
stress-controlled stimuli, mean strain follow a triphasic pattern (A), compliance follows a U curve (B) 

while stiffness follows a U-inverse curve (B). Under strain-controlled stimuli, the peak stress decreases
nonlinearly over time (C).

With regard to the process o f ED, studies have shown an increase in matrix 

metalloproteinase (MMP) production under stress deprivation (Arnoczky, Lavagnino et 

al. 2007; Arnoczky, Lavagnino et al. 2008; Gardner, Arnoczky et al. 2008). The same 

outcome can be observed under dynamic stimuli, but in a magnitude- and duration- 

dependent manner (Devkota, Tsuzaki et al. 2007). Moreover, tendinopathic tendons 

exhibit MMP up-regulation. Finally, in the R process, studies have shown that collagen
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and glycosaminoglycan productions are induced by suitable mechanical stimulation 

(Screen, Shelton et al. 2005; Kjaer, Magnusson et al. 2006; Devkota, Tsuzaki et al. 2007; 

Maeda, Shelton et al. 2007; Kjaer, Langberg et al. 2009; de Almeida, Tomiosso et al. 

2010).

3.6.3 Global FLBT response to biophysical stimuli

The global FLBT response to biophysical stim uli combines the ECM response (Figure 3- 

4 in blue) and the cellular response (Figure 3-4 in green). (Please note that Figure 3-A -l 

in the Appendix also shows global FLBT mechanobiological response but w ithou t using 

the block diagram representation). The competitive dynamics o f MD, ED and R regulate 

tissue mechanobiological response (TMR), which can be expressed, as a firs t 

approximation, as: TMR = R - MD - ED where X r *  Xmd *  Xed. These differences in repair 

and degradation rates occur because, in ter alia, protein expression takes time to occur. 

Moreover, repair and degradation rates vary in different ways according to the 

biophysical stim uli (amplitude, frequency, rest periods, etc.) and tissue quality. For 

example, immobilization increases Xed but decreases X r  and Xmd.

Thus, depending on the biophysical stimuli, TMR can lead to tissue homeostasis, 

improvement or degeneration in an inverse-U relationship (ScienceDirect 2011). The 

clinical implications are that immobilization (under-stimulation) results in tissue 

weakening (Woo, Gomez et al. 1982; Jozsa LG 1997; Wang, losifidis et al. 2006; Woo, 

Abramowitch et al. 2006; Woo SL-Y 2007), while tra in ing (stimulation) results in 

improvement o f tissue mechanical performance (Woo, Gomez et al. 1982; Wang, 

losifidis et al. 2006), and overtraining or overuse (over-stimulation) results in tissue 

damage (Jozsa LG 1997; Wang, losifidis et al. 2006; Woo, Abramowitch et al. 2006; Woo 

SL-Y 2007).

As tissue degrades or improves in response to biophysical stimuli, the quality o f the 

ECM is altered (Kannus and Jozsa 1991; Jarvinen, Jozsa et al. 1997; Jozsa LG 1997; Cook 

JL 2004; Scott, Cook et al. 2007; Woo SL-Y 2007; Maffulli, Longo et al. 2008; Xu and 

Murrell 2008). Cell attributes, such as shape, phenotype and live/dead state, also vary
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(Jarvinen, Jozsa et al. 1997; Jozsa LG 1997; Cook JL 2004; Scott, Cook et al. 2007; Woo 

SL-Y 2007; Maffulli, Longo et al. 2008; Xu and M urrell 2008). Consequently, under 

constant macroscopic stimuli, the microscopic stimuli, biochemical signals, R, ED and 

MD w ill progress and change according to feedback from the tissue quality (Figure 3-4 

in red).

These observations led Arnockzy e ta l (Arnoczky SP 2007)to propose a new hypothesis 

in tendinopathy: microtraumas to the collagen structure create an environment of 

mechanobiological under-stimulation, leading to pathological changes, such as 

increased MMP and apoptosis. In other words, as the collagen structure degrades, fewer 

microscopic stimuli are received by the individual cells. Consequently, cells eventually 

become under-stimulated and enter the left part of the Inverse-U curve, leading to 

further tissue degradation.

3.7 Im pact o f ECM viscoelasticity and viscoplasticity on live FLBT 

response to biophysical stim uli

The response o f live FLBT to biophysical s tim uli is affected by the 

viscoelastic/viscoplastic behaviours o f the ECM (Figure 3-4 in orange). During the 

application o f biophysical stimuli, we observe that the microscopic stim uli sensed by 

the cells change over time, even though the macroscopic biophysical stim uli remain 

constant. Static or dynamic stress relaxation and creep experienced by the ECM result 

in microscopic stimuli (e.g. flu id flow and cell deformation) tha t vary over time. 

Moreover, these stim uli progress differently under strain- or stress-controlled 

macroscopic stim uli (Figure 3-1). This necessarily has consequences fo r the cell's 

mechanobiological response.

The impact o f viscoelasticity/viscoplasticity on the cellular response is a complex one. 

For example, under dynamic stress stimuli, the ECM undergoes dynamic creep, which 

could lead to micro-damage if  the degradation rate (X md + X ed)  were to be greater than 

the repair rate (X r). As micro-damage to the ECM occurs, X md increases (Wang, Ker et al. 

1995; Wren, Lindsey et al. 2003; Fung, Wang et al. 2009; Parent G 2011). Moreover, the
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signals sent to the cells change, and i f  the cells become under-stimulated, X ed increases 

(Lavagnino, Arnoczky et al. 2006; Arnoczky SP 2007). A "vicious circle" would emerge 

at this po in t However, i f  rest periods were to be established between stimulation 

periods in order to allow the ECM to recover its in itia l length, and to provide time for 

the cells to repair the micro-damage, the outcome could be completely different.

Similarly, under dynamic strain stimulation, the ECM undergoes stress relaxation, 

which leads to cells becoming under-stimulated. Consequently, Xed increases and, w ith  

a damaged structure, cell stimulation continues to decrease. Again, this potentially leads 

to a vicious circle. However, i f  the amplitude o f the strain stimulation is increased 

regularly to maintain a minimum peak-to-peak stress amplitude, or i f  rest periods are 

included to allow for stress recovery, the outcome could once again be completely 

different.

Our group recently obtained experimental data to support this (Jafari; Yoan Lemieux- 

LaNeuville 2012). The aim of our study was to investigate the effect o f two 

characterization protocols on tissue mechanobiological alterations over time. We had 

two groups o f live healthy tendons. We subjected the first group to mechanical stimuli 

at physiological amplitudes inside a bioreactor for 3 days. We subjected the second 

group to the same mechanical stimuli but also to 24 stress relaxation tests at 

physiological amplitudes each day. We compared alterations in each group over time 

and observed that stress relaxation tests at physiological amplitudes modified the 

tendon response to mechanical stimulation in vitro. These results are a demonstration 

o f the effect o f viscoelasticity/viscoplasticity o f tissue on its response to mechanical 

stimuli.

3.8 Im pact of ECM viscoelasticity and viscoplasticity on in vitro 

mechanobiological research and in vivo clinical applications

Knowing that viscoelasticity and viscoplasticity affect live FLBT response to biophysical 

stimuli, researchers must consider these macro-mechanical behaviours when designing 

experimental protocols for bioreactor studies or when attempting to improve clinical
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applications. For in vitro studies, this translates into taking enlightened decisions about 

the following concerns:

• Strain- or stress-controlled stimuli: Many laboratories choose to w ork under 

strain- or displacement-control (Lavagnino, Arnoczky et al. 2003; Screen, 

Shelton et al. 2005; Maeda, Shelton et al. 2007; Cousineau-Pelletier P 2009), 

possibly because i t  is much simpler to implement in a bioreactor. Other 

laboratories implement stress- or force-control to mimic tendons which transm it 

forces from the muscle to the bone in vivo (Schechtman and Bader 1997; Ker, 

Wang et al. 2000; Yamamoto, Kogawa et al. 2005; Parent G 2011). This decision 

is not an easy one, especially as this subject has not been explored in depth. 

However, as explained earlier, i t  w ill have an impact on mechanobiological 

response because o f tissue viscoelasticity and viscoplasticity and therefore 

needs to be considered.

• Stimulus history: Since FLBT contain live cells, but also because o f the ir macro

mechanical behaviour, FLBT mechanobiological response is affected by rest 

periods. Prelim inary testing can be easily done to explore the impact o f rest 

periods on tissue response. However, i t  is im portant to keep in m ind that as the 

tissue progresses over time, the impact o f rest periods may also progress.

• Intelligent bioreactors or adjustable protocols: In response to macroscopic 

biophysical stimuli, tissue quality (o f ECM and cells) changes. Consequently, the 

macro-mechanical behaviour and mechanobiological response also change. For 

optimal tissue improvement, macroscopic biophysical stim uli should be 

continually adjusted to tissue quality. This could be done manually or through 

intelligent bioreactors. However, once again this subject has not yet been 

thoroughly explored.

• Mechanical characterization protocols: Viscoelasticity and viscoplasticity 

could also have an impact on the characterization protocols used to evaluate 

tissue progression in bioreactor studies o f FLBT response to biophysical stimuli. 

In such studies, characterization o f tissue progression is essential to
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understanding and eventually predicting its response to mechanical stimuli. 

There is, however, a paradox in measuring progression in live tissue: how can 

we accurately measure tissue progression over time i f  the tissue is also reacting 

to our measurement methods? (Jafari ; Yoan Lemieux-LaNeuville 2012)The 

methods used to observe tissue progression over time could introduce a bias 

because of the impact o f stimulus history on ECM macroscopic behaviour (Jafari; 

Yoan Lemieux-LaNeuville 2012).

W ith regard to clinical applications, tissue viscoelasticity and viscoplasticity are 

unavoidable concepts in the design and improvement of mechanobiology based 

treatment plans. For example, in in ju ry  prevention, i t  has been proposed that adequate 

rest between periods o f physical activity is required to avoid ligament creep and its 

consequences such as jo in t laxity, instability and osteoarthritis (Solomonow, He Zhou et 

al. 2000; Solomonow 2004). In current rehabilitation practices, treatments using static 

creep and stress-relaxation are common. Examples include stretching to increase the 

range of motion (Kisner C 2007) or using orthotics over long periods to treat 

deformities such as scoliosis (Nordin and Frankel 2001). Treatments using dynamic 

stimulation also exist Early mobilisation after tendon repair is one example. In that 

case, passive motion (i.e. w ithout muscle contraction) to stimulate tissue repair and to 

avoid contracture caused by immobilisation (Kisner C 2007). Later, to minimize 

impairment o f muscle performance, motion should progress from passive to active 

exercise in the following sequence: isometric, concentric, and fina lly eccentric 

movements (Kisner C 2007).

Another clinical application is the treatment o f tendinosis, which can be very 

challenging. Studies have shown that approximately one-third o f athletes w ith  lower 

extremity tendinosis demonstrate poor outcomes w ith  either conservative therapy or 

surgical treatment (Cook, Khan et al. 1997; Chiara Vulpiani, Guzzini et al. 2003). Tendon 

mechanical properties have been shown to change w ith  strength tra in ing  but more 

research is needed to shed light on the theoretical framework supporting the 

mechanotherapeutic effect o f different types o f exercise on tissue repair. For the past 

two decades, the preference o f eccentric tra in ing over concentric tra in ing fo r the
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conservative management of tendinopathy has been accepted, and whether eccentric 

exercise is more effective than other types o f exercise to reduce symptoms or promote 

healing remains unresolved (Wasielewski NJ 2007), Therefore, we need to find a 

consensus on optimal parameters (duration, frequency, magnitude and type of 

mechanical stimulation) that should be applied to the tendon during the training 

program that w ill improve and/or accelerate the healing process w ithou t causing more 

damage to the tissue. This w ill be very challenging. For example, the maximum 

deformation and strain induced in tendons from in vivo muscle loading vary 

considerably according to variables such as age and sex, w ith  values ranging from 2.5% 

to 10% (Maganaris and Paul 1999; Kubo, Kanehisa et al. 2001; Kubo, Kanehisa et al. 

2003; Kubo, Kanehisa et al. 2003). This suggests that large inter-individual variations in 

tendon structural properties, jo in t mechanics and muscle-tendon-bone adaptation 

responses can be expected, and that a "one size fits all” treatment protocol may not be 

an option.

In order to improve clinical applications, we need a better understanding o f in vivo 

biophysical stim uli induced by daily activities or exercises:

Muscle-tendon unit: For in vivo situations, we must consider the entire muscle-tendon 

unit and not solely the tendon as we do in in vitro bioreactor studies. The muscle, 

passive or contracted, has mechanical properties that affect the reaction o f the whole 

tendon-muscle un it to biophysical stimuli. Moreover, the maximal force generated by a 

muscle is a function o f its length and speed o f contraction (Oatis 2009). Consequently, 

during exercises conducted at maximal muscle force, the load on the FLBT may vary 

w ith  time. Studies to deepen our understanding of the tendon stim uli in vivo are 

therefore required. These studies should not only look at tendon stim uli over a few 

repetitions, but also over longer periods such as a w ork shift, since stim uli may change 

over this time period.

Strain- or stress-controlled stimuli: In vivo, the type o f stress- or strain-control used 

the movements has not yet been clearly identified in real-life situations. Therefore,
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making parallels between in vivo and in vitro  situations is hazardous and should be 

assisted by theoretical and experimental investigations.

3.9 Concluding rem arks and future perspectives

Despite progress in mechanobiology, there are s till significant gaps in knowledge, in 

particular regarding the impact of: 1) the type o f stimulus input (strain- or stress- 

controlled stimulus), 2) stimulus history, 3) changes in tissue quality, and 4) methods 

used to observe alterations in tissue over time. These topics have not been sufficiently 

investigated in bioreactor studies examining pathophysiology or functional tissue 

engineering, or even in in vivo clinical studies. Research in these areas is therefore 

required.

The authors’ view is that dose-response experiments alone would not be sufficient to 

investigate these subjects because there are too many input possibilities (strain- or 

stress-controlled stimulus, amplitude, frequency, rest periods, tissue quality, etc.). 

Experiments could thus conceivably last for many years. Instead, we believe that 

theoretical models should firs t be created to relate macroscopic to microscopic stimuli 

for different tissue qualities. Then, well planned dose-response experiments should be 

conducted in conjunction w ith  modelling, to identify the transfer functions between 

macroscopic stimuli, microscopic stimuli, ECM response and cellular response.

The theoretical model and experimental data together should facilitate an 

understanding o f tissue mechanobiological response and allow prediction o f the 

optimal stimulus to minimize X md, and X ed and maximize Xr. For example, a 

combination of both types o f stimulus input (strain- and stress-controlled stim uli), each 

used at different time points during FLBT rehabilitation, could be the best strategy to 

promote tissue healing, bearing in mind that X r, X md, and X ed all vary according to tissue 

quality, tissue viscoelasticity/viscoplasticity and stimulus input. The new knowledge 

could ultimately be used to improve in vitro  and in vivo applications, such as functional 

engineered tissues, rehabilitation following tendon repair surgery, the ligamentization 

process following anterior cruciate ligament repair and the healing o f tendinosis. For
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clinical applications however, a better understanding o f in vivo biophysical stimuli 

induced by daily activities or exercises is required, as pointed out earlier.

Key Points

1) Fibrous load-bearing tissues (FLBT) are well organized biopolymers containing 

a high proportion o f extracellular matrix (ECM). Thus, the molecules network 

forming the ECM is responsible fo r the tissue macro-mechanical behaviours.

2) FLBT have viscoelastic or viscoplastic macro-mechanical behaviours. They 

exhibit reversible or non-reversible deformation accompanied by energy losses 

which depend on ECM quality variables, such as structure, composition and 

cross-linking.

3) Because o f the ir viscoelastic or viscoplastic macro-mechanical behaviours, FLBT 

reaction to biophysical stim uli is influenced by the type of stimulus input (strain- 

or stress-controlled stimulus) and stimulus history (including rest periods).

4) Under macroscopic biophysical stimuli, ECM molecules are subjected to stress 

and strain, and could thus undergo mechanical degradation (MD). Changes to 

mechanical properties and ECM structure related to MD in FLBT are non-linear 

over time and heterogeneous across the tissue.

5) When FLBT are subjected to macroscopic biophysical stimuli, these stimuli are 

scaled down to microscopic biophysical stim uli which are, in turn, transformed 

into biochemical signals that the cells can sense. In response to these signals, the 

cell can degrade the ECM via enzymatic degradation (ED) or repair (R) it.

6) The tissue global mechanobiological response is the result o f competitive 

dynamics between degradation and repair leading to an inverse-U relationship 

between stimulation and tissue quality. Moreover, the three processes o f R, ED 

and MD involved in these dynamics are inter-related, since they all affect and 

depend on ECM and cell quality at the same time. They also have different time 

rates o f action.
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7) In conclusion, viscoelasticity and viscoplasticity o f FLBT influence tissue 

mechanobiological response and must be considered when identifying the 

macroscopic biophysical stim uli to promote the healing of native tissues, to 

optimize rehabilitation after surgery or to improve engineered tissues.
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Appendix

Below are the definitions the authors consider to be vita l to understanding the ideas 

contained in this paper.

Tissue quality: Condition of a tissue (ex: healthy, damaged) determined by different 

parameters, such as composition, structure and cross-linking for the ECM, or v iab ility  

and proliferation for cells.

Macroscopic biophysical stimuli: Static or dynamic mechanical loadings applied 

macroscopically to the tissue. Biophysical stim uli can be created in vitro  inside a 

bioreactor, or in vivo through daily activities such as at w ork  or during training.

Strain-controlled stimuli: Macroscopic biophysical stim uli applied under strain 

control, for example, a sinusoidal stimulus o f 1% strain amplitude applied at 1Hz to the 

tissue.

Stress-controlled stimuli: Macroscopic biophysical stim uli applied under stress 

control, for example, a sinusoidal stimulus o f 1 MPa stress amplitude applied at 1Hz to 

the tissue.

Macro-mechanical behaviour: A macroscopic mechanical behaviour o f a material, 

which in this context refers specifically to viscosity, elasticity and plasticity, or to the ir 

combinations (viscoelasticity and viscoplasticity).

Manifestation of ECM behaviour: A macroscopic mechanical reaction o f the 

viscoelastic or viscoplastic ECM to biophysical stimuli. For linear elastic materials, for 

example, this reaction is governed by Hook's law. This means that stress and strain are 

linearly related via Young's modulus.

Microscopic biophysical stimuli: Biophysical stim uli inside the tissue are detected by 

the individual cells; this includes flu id flow, ion and molecule movements and gradients, 

pressure gradients and stress/strain in the molecules that compose the ECM. A 

microscopic biophysical stimulus is produced when a macroscopic biophysical stimulus 

is applied to the tissue.
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ECM response: Microscopic mechanical reaction o f the ECM to biophysical stimuli, 

which in this context refers to the mechanical degradation o f the ECM

M echanotransduction: The conversion o f microscopic biophysical stim uli into 

biochemical signals. One example o f mechanotransduction is the movement o f ions 

through channels activated by the mechanical stretch of the cellular membrane.

Cellu lar response: The biological reaction o f live cells to biophysical stim uli, which in 

this context refers to the repair and enzymatic degradation o f the ECM.

Mechanobiological response: Global reaction of live tissues to biophysical stimuli. 

This includes ECM and cellular responses, and therefore mechanical degradation, repair 

and enzymatic degradation.
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Figure 3-A-l: Illustration of the mechanobiological response of FLBT under biophysical. Under 
macroscopic biophysical stimuli, the inert extracellular matrix (ECM) undergoes mechanical degradation 

(MD). At the same time, the ECM reduces the macroscopic stimuli applied to the tissue as a whole into 
microscopic stimuli detected by the cells. This process is called mechanotransduction. The resulting 

biochemical signals instruct the cells to repair (R) or use enzymatic degradation (ED) on the ECM. As the 
tissue is altered in response to stimuli, the quality changes. Thus, the microscopic stimuli, biochemical

signals, R, ED and MD also progress and so on.
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4. Mechanical characterization tests o f physiological 

amplitude conducted at regular intervals can affect tissue  

response to mechanobiological stimuli

4.1 Avant-propos

Auteurs et a ffilia tio n : Leila Jafari1, Yoan Lemieux-LaNeuville1-2, Denis Gagnon2, Eve 

Langelier1. 1. PERSEUS, Department o f Mechanical Engineering, Universite de 

Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada. 2. Department of Kinanthropology, 

Universite de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada

Date de soumission: 21 Jan 2013

Revue: Biomechanics and modeling in mechanobiology

T itre  en francais: Des essais de caracterisation mecanique d'amplitude physiologique 

realises a intervalles r6guliers peuvent influencer la reponse tissulaire aux stimuli 

mecanobiologiques

Resume francais:

La mecanobiologie joue un role majeur dans le domaine musculo-squelettique, 

notamment en genie tissulaire de meme que dans la prevention et la guerison des 

blessures. Dans 1'etude de la mecanobiologie des tissus en bioreacteur, la 

caracterisation de revolution des tissus est essentielle pour comprendre et 

eventuellement predire leur reponse aux stim uli mecaniques, mais malheureusement, 

les methodes utilisees sont souvent destructives (e.g. histologie ou essai de rupture). Ce 

serait neanmoins un grand avantage d'avoir un porta it de Involution de la qualite des 

tissus dans le temps. II y a cependant un paradoxe lors de la mesure de revolution des 

tissus vivants dans le tem ps: comment pouvons-nous mesurer precisement revolution 

des tissus dans le temps s’ils rSagissent aussi a nos methodes de mesure? Les methodes 

utilisees pour observer invo lu tion des tissues dans le temps peuvent induire un biais 

qui peut varier en fonction du protocole d'observation. Dans cette etude, nous avons

70



www.manaraa.com

examine l’hypothese que des essais de relaxation de contrainte d’amplitude 

physiologique realises a des intervalles reguliers entre les periodes de stimulation ne 

modifient pas 1’evolution des tissus dans le temps. Nous avons soumis des tendons sains 

et vivants a des stimuli mecaniques d'amplitudes physiologiques a l’ interieur d’un 

bioreacteur pendant 3 jours. Nous avons regroupe les tendons selon le protocole de 

caracterisation (0 ou 24 essais de relaxation d'amplitude physiologique chaque jour) et 

nous avons compare 1’evolution des groupes dans le temps. Les essais de relaxation de 

contraintes d’amplitude physiologique ont modifid 1’evolution des tendons en reponse 

aux stimuli mecaniques in vitro. De fagon gdnerale, le module pointe a augmente dans le 

temps pour le groupe de 0 essai de relaxation de contrainte alors qu 'il a d'abord 

diminue puis legerement augmente pour le groupe de 24 essais de relaxation de 

contrainte chaque jour. En conclusion, l ’insertion d'essais de relaxation de contrainte 

d’amplitude physiologique pendant les periodes de repos entre les stim uli mecaniques 

peut influencer revolution des tissus dans le temps.
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4.2 Abstract

Mechanobiology plays a major role in skeletal tissue engineering; it  is also an important 

field of study in the prevention and healing of certain musculoskeletal disorders. In 

bioreactor studies o f tissue mechanobiology, characterization of tissue progression is 

essential to understanding and eventually predicting its response to mechanical stim uli 

but unfortunately, the methods used are often destructive (e.g. histology o r rupture 

test). It would nevertheless be a great advantage to have a portra it o f tissue quality 

progression over time. There is however a paradox in measuring progression in live 

tissue: how can we accurately measure tissue progression over time i f  the tissue is also 

reacting to our measurement methods? The methods used to observe tissue 

progression over time can introduce a bias that may even vary depending on the 

observation protocol. In this study, we investigated the hypothesis that stress 

relaxation tests at physiological amplitudes conducted at regular intervals between 

stimulation periods do not modify tissue progression over time. We subjected live 

healthy tendons to mechanical stimuli at physiological amplitudes inside a bioreactor 

for 3 days. We grouped the tendons based on the characterization protocol (0 or 24 

stress relaxation tests at physiological amplitudes each day) and compared group 

progression over time. Stress relaxation tests at physiological amplitudes modified the 

tendon response to mechanical stimulation in vitro. Generally, peak modulus increased 

over time for 0 stress relaxation tests each day, whereas i t  first decreased and later 

lithely increased for 24 stress relaxation tests each day. Therefore, inserting stress 

relaxation tests at physiological amplitudes during rest periods between mechanical 

stimulation may influence tissue progression over time.

Key words

Tendon, Mechanobiology, Mechanical properties, Characterization, Progression, Stress 

relaxation
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4.3 Introduction

Skeletal mechanobiology investigates how load-bearing tissues are produced, 

maintained and adapted by cellular activity in response to physical stim uli (van der 

Meulen and Huiskes 2002). It plays a major role in tissue engineering where i t  allows us 

to develop prosthetic organs that can carry out the functions o f natural tissues in the 

body (Freed et al 2006; Guilak et al 2003). It is a significant field o f study in the 

prevention and healing o f certain musculoskeletal disorders, since many o f these 

disorders are associated w ith  inadequate mechanical loading, as reviewed by Wang and 

Thamppatty (Wang 2006; Wang and Thampatty 2006). In mechanobiology, 

characterization o f tissue progression is essential to understanding and eventually 

predicting tissue response to mechanical stimuli. Various methods are used: optical and 

electron microscopy to characterize tissue structure at d ifferent scales; Western blot 

and hydroxyproline assay to characterize tissue composition; Northern b lo t and real

time PCR to characterize gene expression; traction tests to characterize mechanical 

properties (e.g. Young modulus and ultimate tensile stress and strain).

Unfortunately, these methods are often destructive (Kortsm it et al 2009). We therefore 

cannot use them at regular intervals on the same sample to characterize progression 

over time. Moreover, i t  is sometimes impossible to combine any tw o destructive 

characterization methods: this either lim its the available information on the tissue 

quality or requires a greater number o f specimens. For example, the traction test 

damages tissue structure and introduces bias to microscopic analysis. Another example 

is when we take a biopsy for microscopic analysis on a tissue sample intended for a 

traction test: this weakens the sample and skews the mechanical characterization.

A few authors have already recognized the need to describe tissue quality progression 

(Cousineau-Pelletier and Langelier 2010; Guilak et al 2003; Kortsmit et al 2009; Lujann 

et al 2011; Shulz et al 2008). It would certainly be useful to have a p o rtra it o f the 

progression o f tissues over time, which would take the form  of homeostasis (no 

change), degeneration or improvement In the special case o f load bearing tissues, the 

characterization o f the mechanical aspects o f tissue quality would inform  us o f the
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tissue's capability to fu lfill its prim ary function, i.e. to transmit, damp and/o r support 

loads (Guilak et al 2003; Lujann et al 2011). To achieve this objective, non-destructive 

mechanical tests such as stress relaxation, creep or dynamic tests o f physiological 

amplitudes can be used. When conducted at regular time intervals, these tests provide a 

picture o f tissue mechanical properties over time.

In the field o f cell mechanics, Bao and Suresh (2003) formulated a paradox: "how can 

we measure the mechanical behaviour o f living cells i f  they react to our measurement 

tools?" A sim ilar paradox can be formulated for the progression o f live tissue: how can 

we measure tissue progression over time i f  it  reacts to our measurement methods? At 

the moment, we do not know i f  the "observer effect" can be set aside, since we do not 

know if  existing methods to observe tissue progression over time modify tissue 

progression in a negligible way or n o t This unanswered question is im portant because 

the observer effect could introduce a bias between reality and observation. Moreover, 

this bias could vary w ith  the observation protocol, and make it  d ifficu lt to compare 

results between studies.

We investigated the hypothesis that stress relaxation tests at physiological amplitudes 

conducted at regular intervals do not modify tissue progression over time. This 

hypothesis is based on previous w ork done on freshly isolated articular cartilage where 

i t  was observed that small amplitude stress relaxation tests conducted repetitively over 

a 12-hour period superposed very closely as i f  they did not impact the next one 

(Langelier and Buschmann 2003).

To test our hypothesis, we subjected live tendons to mechanical stimulation at 

physiological amplitudes inside a bioreactor for 3 days. We divided the tendons into 

two groups. In each group, we included 0 or 24 stress relaxation tests at physiological 

amplitudes each day. We then compared group progression over time.
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4.4 M aterials and Methods 

Tissue Explant Isolation and Preparation

All animal care and handling were approved by the Council o f Animal Protection at the 

Universite de Sherbrooke. Eight Sprague-Dawley rats between the ages o f 4 and 6 

months were sacrificed using carbon dioxide. Tendon isolation and preparation were 

conducted as described in previous studies (Bruneau et al 2010, Cousineau-Pelletier 

and Langelier 2010). All manipulations presented in this section were performed in 

cold D-PBS IX  (311-410-CL; Wisent Inc., St-Bruno, Canada) containing lg /L  glucose 

(609-037-EL; Wisent Inc.) and 1% antibiotic-antimycotic (15240-062; Invitrogen, 

Burlington, Canada). Four tendons were isolated from  each ra t tail w ith in  an hour of 

resection (Figure 4-1). Following isolation, the cross-sectional tendon areas were 

evaluated using an optical micrometer (Parent et al 2010). They were then washed 5 

times under the biosafety cabinet. For mechanical characterization and stimulation, the 

tendons were transferred into the bioreactor (Parent et al 2011). The ends o f the 

tendons were wound around cylinder-shaped anchors and allowed to d ry  brie fly  on the 

top face o f the anchors. A small drop o f ethyl cyanoacrylate (10300; Krazy Glue, 

Columbus, OH) was applied to the portion o f the tendon at the top of the anchor.

| 2 tendons ] 
1

[ 4 tendons ]

2 tendons |

Group 1 
24 relaxations

k t '
Mean

Group 2 
0 relaxation

I
Mean

N=8 rats

Figure 4-1: Number and distribution of the tendons for each ra t For statistical analysis of the peak-to- 
peak modulus between two groups, we used Wilcoxon matched-pairs signed rank test
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Tissue Culture

During the experiment, the tendons were maintained in DMEM (12800-017; Invitrogen, 

Burlington, Canada) supplemented w ith  3.7 g /L  of sodium bicarbonate (600-105-CG; 

Wisent Inc.), 10% FBS (090150; Wisent Inc.), and 1% antibiotic-antimycotic solution.

Mechanical Stimulation

After temperature stabilization in the bioreactor at 37°C, the specimens were subjected 

to the following stimulation protocol. The in itia l zero strain reference was defined by 

achieving a tension load o f 3g at equilibrium. Preconditioning was performed w ith  a 

series o f 120 sinusoidal waves at two different amplitudes (60 cycles at 1% strain; 60 

cycles at 2% strain) executed at 1 Hz. The final zero strain reference was defined by 

again reaching a tension load o f 3g at equilibrium. Thereafter, the 3-day stimulation 

protocol was used: each day, the tendons were subjected to four periods o f 6h each 

composed of 30min o f stimulation (sine wave pattern; 1.2% strain; 1Hz) and 5 h 30 min 

of rest (0% strain).

Impact of Stress Relaxation Tests and Recovery Periods

To highlight the impact o f mechanical tests at physiological amplitudes on the 

mechanobiological response, we included stress relaxation tests (1% /s strain rate, 

1.2% strain, 30s pause) in the stimulation protocol. The strain amplitude was selected 

based on prelim inary traction tests (data not shown) in which the linear portion o f the 

stress-strain curve spread up to about 1.5% strain. We divided the tendons into two 

groups (Figure 4-1). In group 1 (N= 8), 24 stress relaxation tests were integrated each 

day (1 per hour). In group 2 (N= 8), no relaxation tests were integrated (Figure 4-2).

Mechanical Characterization of Tissue Progression

To characterize the changes in mechanical properties over the 3-day period, we 

adapted the method developed by Cousineau-Pelletier and Langelier (2010). We 

evaluated the changes in the peak-to-peak modulus produced by the stimulation 

protocol. We used the modulus in the last ten cycles o f the firs t stimulation period as a
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reference (Mref). Every 6 hours, we compared the modulus fo r the last ten cycles of 

stimulation (M) to this reference value (Figure 4-3).

G roup 1:
2 4  re laxation  

tests each day

G roup 2:
0  re laxation  

tes t each day

3 0 m ln 5 h 3 0 m ln

24-hour period

M echanical s tim u lation  (sine w ave pattern , 1.2%  strain, 1Hz, 30  m inutes)

Stress re laxation  test (1%  strain ra te , 1.2%  strain; 30s pause)

Figure 4-2: Integration of stress relaxation tests between stimulations

We calculated the peak-to-peak modulus as peak-to-peak stress divided by peak-to- 

peak strain. The stresses were evaluated as the ratio of the forces measured w ith  load 

cells over the in itia l tissue cross-sectional areas. The strains were calculated as the ratio 

of the changes in length measured w ith  encoders over the in itia l tendon length. We 

calculated the response o f each tendon as:

Change (%) = — -  x 100 (1 )
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Reference
Evaluation

Ml
G roup 2:
0  re laxation  
tes t each d ay

3 0 m ln

24-hour period

Figure 4-3: Evaluation of changes in peak modulus. The mean peak-to-peak modulus in the last 10 cycles 
of the first stimulation period was used as a reference. Every 6 hours, the mean peak-to-peak modulus in 

the last 10 cycles of stimulation was compared to the reference value

Statistical Analysis

We used the Wilcoxon matched pair signed rank test to verify whether there is a 

significant difference between tw o tendon groups. We used the non-parametric test 

since the population was small and did not have a normal distribution. For each rat, the 

data sets obtained for two tendons were averaged in each group (Figure 4-1). Thus, for 

each rat, a pair o f data sets was always available: one set for O-relaxation group, and 

another one for 24-relaxation group. The significance was set at p < 0.05.

4.5 Results 

Change in Peak Modulus

The number o f stress relaxation tests influences changes in the peak-to-peak modulus 

as shown in Figure 4-4. Tendons subjected to 0 stress relaxation tests each day saw 

their peak modulus increase to approximately 115% in three days. However, over the 

same period, tendons subjected to 24 stress relaxation tests each day saw the ir peak 

modulus decrease to approximately 93.5%. The difference between the peak modulus 

of two groups was significant at all time points.

79



www.manaraa.com

150.0

0.0

-  0  re la x a tio n

2 4  re la x a tio n s

50.0M

20 40  

Time (h)
60 80

Figure 4-4: Changes in peak modulus of each group (mean ± SD). At the end of day 3, changes in peak 
modulus were 93.5 ±35.1% for group 1, and 115 ± 20.5% for group 2. Stars indicate significant

differences between the 2 groups.

4.6 Discussion

This study shows that stress relaxation tests at physiological amplitudes can modify the 

response of healthy tendons to in vitro  mechanical stimulation. The changes in 

measured peak-to-peak modulus varied w ith  the number o f repetitions per day as a 

negative impact on stress recovery could be measured w ith  the 24 daily stress 

relaxation tests.

It is worth mentioning that our modification to the method of characterizing the 

changes in mechanical properties over the 3-day period did not alter the conclusion of 

the study. Previously (Cousineau-Pelletier and Langelier 2011), we had compared the 

mean peak-to-peak stress values o f the last 5 minutes o f stimulation w ith  the reference 

value, which was the maximum peak-to-peak stress value o f the firs t m inute o f the 

whole stimulation. We implemented the "reference" modification to elim inate the effect 

o f dynamic relaxation on the reference value and to m inim ize the intra-animal variation 

which is smaller after dynamic relaxation. Also, we implemented the "modulus vs stress
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modification” to account fo r strain. We statistically tested the results calculated in this 

manner. Results fo r both groups (0 vs 24 relaxations/day) were significantly different 

at 18, 30, 42, 54 and 60h w ith  p<0.05; and at 12, 24, 36, 48 and 66h w ith  p<0.08. The 

difference in the statistical significance o f these results compared to our new method of 

evaluating changes in mechanical properties can be explained by the pairing, which was 

significant w ith  the new method (p<0.05) but not w ith  the older method. Therefore, our 

conclusion remains unchanged: stress relaxation tests at physiological amplitudes can 

modify the response o f healthy tendons to in v itro  mechanical stimulation.

These results may have implications in other fields such as the study o f time - 

dependent spine stability and related risks o f in ju ry as well as low er back pain. As 

reviewed by Solomonow (2011), there are two categories o f spine stabilizers. The firs t 

category includes the passive components: the ligaments, disks, capsules and fascia, 

which stabilize the spine through the ir viscoelastic properties. The second category 

includes the dynamic components: muscles and their sensory-motor control, which 

stabilize the spine through co-contraction, muscular stiffness, intra-abdominal 

pressure, and compressive force on disks. The tissues form ing the passive components 

are exposed to stretching during daily activities, inducing spine laxity. Stretching affects 

the sensitivity o f mechanoreceptors as well as the control o f muscular activity, and thus 

may influence spine stability. Rest periods are essential fo r both passive and active 

component recovery, but should the recovery period be complete rest or low  amplitude 

activities? In seeking to answer this question, our study reveals that the number of 

repetitions o f low  amplitude activities may have a substantial impact on recovery time 

and should therefore not be neglected.

The results presented in  this study can be explained by two mechanisms: viscoelasticity 

and cellular activity. When submitted to dynamic stimulations under strain control, 

tendons experience stress relaxation. This phenomenon, explained by the viscoelastic 

nature o f tendons, can be illustrated as a string which elongates s lightly at each cycle 

(up to a maximum corresponding to the stimulation amplitude). Consequently, the 

measured stress decreases at each cycle because the string is under decreasing tension. 

At rest, between the dynamic stimulation periods, the string shortens and recovers
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from stress. This recovery is partly attributed to viscoelasticity and partly to cellular 

activity. In a previous study we showed that stress recovery is greatly reduced in the 

absence o f cellular activity (Cousineau-Pelletier and Langelier 2010).

The inclusion o f stress relaxation tests can perturb stress recovery even though the 

physiological amplitude is slight (1.2%) and the period is short (30s) in comparison to 

the rest period (5h30min). Stress relaxation tests may impede stress recovery by 

slightly lengthening the tendon at each occurrence. This in tu rn  may impact cellular 

activity through stress decrease/deprivation at the cellular scale, which has been 

shown to upregulate collagenase mRNA expression and protein synthesis (Lavagnino et 

al 2003, 2005a; Arnoczky et al 2004; Lavagnino and Arnoczky 2005). As a consequence, 

the extracellular matrix, cell-matrix interactions and mechanotransduction may be 

degraded (Arnoczky et al 2007) and a vicious cycle may ensue.

Of course, many questions are raised and remain unanswered regarding the impact of 

stress relaxation tests on tissue mechanobiological response. For example, although we 

suspect that increasing strain rate, amplitude and length o f the test and decreasing rest 

periods between tests increases the impact on tissue response, we do not know the 

precise effects o f these parameters. We also do not know the effect o f the in itia l tissue 

quality (sedentary or a high level o f fitness, young or old, healthy or diabetics, etc). The 

same questions apply to creep tests and dynamic tests.

Until more is known on the subject, the stimulations themselves should be used for 

mechanical characterization as in previous studies (Androjna et al 2007; Cousineau- 

Pelletier et al 2010; Devkota et al 2007; McCulloch et al 2004; Preiss-Bloom et al 2009; 

Shulz et al 2008; Tran et al 2011) and in the present study to  analyze peak-to-peak 

modulus (Figure 4-4). Since stress relaxation tests introduce new mechanical energy to 

the tissues, they must be considered as stimulations and the ir impact must not be 

neglected. Therefore, researchers using them for mechanical characterization need to 

describe the ir characterization protocol precisely and verify its impact on the results 

and conclusion o f the ir study. Obviously, the solution o f using the stimulations for 

characterization is not a perfect one. Due to the nonlinear properties o f tissues, a
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comparison between different stimulation conditions may be complex. However, this 

observation process has an indisputable advantage: it  does not interfere w ith  tissue 

progression.

Tissue characterization during bioreactor confinement is emergent and has not yet 

been standardized. However, we do encourage researchers to implement this means of 

gathering more information on tissue progression over time while using the 

stimulations for characterization.

4.7 Conclusion

This study has shown that inserting stress relaxation tests at physiological amplitudes 

during rest periods between mechanical stimulations may influence tissue progression 

over time. As o f today, to the paradoxical question how can we measure the tissue 

progression over time i f  i t  responds to our measurement methods?, the answer would be 

to use the mechanical stim uli themselves as part o f the study design. In this way, more 

information can be gathered on tissue progression w ithout introducing new energy to 

the tissue.
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5. Unpublished m icroscopy results

In this chapter, we present the data which are not included in the second article. These 

data include the methods we used at Biometiss to characterize tissue quality 

quantitatively and semi-quantitatively based on microscopic images. W ith these 

characterization methods we tried to evaluate if  there were differences between the 

two groups of stimulated tendons: O-relaxation group, and 24-relaxations group.

The tissue quality analyses were conducted on OM and TEM micrographs. We used 

standard tissue preparation methods (Cousineau-Pelletier and Langelier 2009). Briefly, 

the samples were simply fixed by being soaked in formalin (OM), or glutaraldehyde 

(TEM). Then the samples were rinsed inside a buffer solution. The next step was 

dehydration followed by embedding the samples in a support medium for th in 

sectioning. The support medium was paraffin (OM) or epoxy resin (TEM). Finally, 

samples were cut and stained w ith  Hematoxylin/Eosin (H & E) (OM) or uranyl acetate 

and lead citrate (TEM) to add contrast. The microscopic images of samples were used 

for quantitative and semi-quantitative characterizations.

Quantitative and semi-quantitative characterization of tissue structural properties 

could be very useful to avoid inconsistency in diagnosis between specialists resulting 

from qualitative (descriptive) characterization.

We divided this chapter in two sections. In the firs t section, we present quantitative 

methods to evaluate tissue structural quality using the "National Instrum ent vision 

assistant" (Nl-Vision) program. In the second section, we present the semi-quantitative 

method, i.e. the modified Bonar-Movin scoring method to evaluate tissue structural and 

cellular quality.

5.1 NI vision for tissue structural quality

Using Nl-Vision software, we tried to calculate collagen fibril density on OM 

(longitudinal view) and TEM (cross-sectional view) images o f tendons.
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For each image we chose a region o f interest (ROI). It should be noted that areas w ith  

damages caused by preparation were not included (e.g. damage caused by the knife; a 

fold in  the sample). In selected ROIs, fib rils  and spaces between them were found by 

contrast and separated into two categories: fib ril (black); and background (red) (Figure 

5-1). F ibril density was calculated by dividing number o f collagen fib r il pixels (black) by 

number o f pixels in the whole area (black+red).

However, we encountered a challenge to set an appropriate and repetitive contrast and, 

therefore, the proper fitting  o f the black-red image w ith  the origin image. Figure 5-1 is 

an example o f this challenge for OM images. By choosing identical ROIs in both images, 

but w ith  different contrasts, the resulting fiber densities were highly different: 78% vs. 

97%. This large variation could lead to inadequacy in quantitatively characterizing ECM 

structure. Therefore, we found this method inappropriate fo r our purpose.

We encountered the same problem w ith  TEM images. We therefore tried another 

method used in histological analysis o f tendinopathy: the semi-quantitative method of 

Bonar-Movin scale.

5.2 Bonar-m ovin fo r structural and cellu lar quality  

5.2.1 Using standard OM and TEM methods

Histological, semi-quantitative analyses were performed on microscopic images (OM 

and TEM) o f stimulated tendons. For this analysis we modified Bonar-Movin scoring 

scale. The variables we used in our scoring systems fo r OM images were: 1) cell 

morphology, 2) cell aggregation, 3) cell density, 4) fiber waviness, and 5) between-fiber 

spaces. The magnification used fo r the variable scoring was set at 2 Ox, except for "cell 

morphology". To have a more realistic scoring fo r cell morphology we used a higher 

magnification o f 40x. Each variable was scored between 0 and 3, as 0 corresponds the 

normal feature o f the tendons and 3 corresponds to the most severe damage could be 

detected in our samples (Table 5-1)
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Threshold=120 Thresholds 35

Density=0.78033 Density=0.97180

Figure 5-1: Impact of contrast on density results, a. Longitudinal section of H&E stained tendon under 
light microscopy, b, c. black-red images with different contrasts of original image (a). Selected ROIs in 

images b and c are identical, but with different contrasts. The resulting fiber densities are highly
different: 78% vs. 97%. Bar = 200 pm.
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Table 5-1: Modified Bonar-Movin scoring scale in this research

OM images (longitudinal sections) TEM images (Cross- 

sectionnal sections)

Cell

morphology

Cell

aggregation

Cell

density

Fiber

waviness

Between-

fiber

spaces

Fiber density

0 Elongated Long lines of 

cells

Low

density

Straight Low space High density

3 Round Isolated 

cells (OR 

small lines 

of cells)

High

density

Wavy Large space Low density

Two authors scored the images. After tw o weeks, they scored the same images again. If 

there was a difference o f more than one degree between the 4 readings o f a variable, it 

was scored for the final time w ith  consultation o f both authors. Figure 5-2 and Figure 

5-3 are examples o f our scoring scale taken from one reading from one author (out of 

four readings).
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24 relaxations 0 relaxation

'■'*52
Figure 5-3: light micrograph of rat tail tendon 
from 24-relaxation group. Cell morphology: 1;

Cell aggregation: 1; Cell density:l; Fiber 
waviness:l; Space between fiber:2. Bar = 200 

Jim

The global results obtained using this method is presented in figures Figure 5-4 

toFigure 5-9.

Figure 5-2: light micrograph of rat tail tendon 
from 0-relaxation group. Cell morphology:l; Cell 
aggregation^; Cell density:l; Fiber waviness:3; 

Space between fiber:!. Bar = 200 pm
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Figure 5-4: Modified Bonar-Movin scores for cell 
aggregation on OM images. * shows the agreement 

of two evaluations by the same author. ** shows 
the agreement of all four evaluations.

■  0 relaxation 
□  24 relaxation

Figure 5-5: Modified Bonar-Movin scores for cell 
density on OM images. * shows the agreement of 

two evaluations by the same author. ** shows the 
agreement of all four evaluations.
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Figure 5-6: Modified Bonar-Movin scores for cell 
morphology on OM images. * shows the agreement of 

two evaluations by the same author. ** shows the 
agreement of all four evaluations.

Figure 5-7: Modified Bonar-Movin scores for space 
between fibers on OM images. * shows the agreement of 

two evaluations by the same author. ** shows the 
agreement of all four evaluations.

OrtU&Jtlon 
24 rtiaxadons

■  0 Taxation 

□  24rtiuatiotts

Figure 5-8: Modified Bonar-Movin scores for fiber waves 
on OM images. * shows the agreement of two

Figure 5-9: Modified Bonar-Movin scores for fiber 
density on TEM images. * shows the agreement of two

evaluations by the same author. ** shows the agreement evaluations by the same author. ** shows the agreement 
of all four evaluations. of all four evaluations.
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The agreement o f four evaluations was assessed by the Intra-dass correlation (ICC) 

test. There was a perfect agreement between the four evaluations fo r all variables, 

except for cell aggregation (c.f. Figure 5-4 and Table 5-2). For cell aggregation there was 

a perfect agreement between the tw o evaluations o f each author but there was no 

agreement between the four evaluations i.e. there was no agreement between authors 

in scoring cell aggregation.

Table 5-2: ICC scores for each variable (1 indicates perfect agreement and 0 indicates no agreement For
this study the ICC was set at 0.80)

OM images (longitudinal sections) TEM images (Cross- 

sectionnal sections)

Cell

morphology

Cell

aggregatio

n

Cell

density

Fiber

waviness

Between-

fiber

spaces

Fiber

density

Author 1, 

evaluation 1

Author 1, 

evaluation 2

0.81

0.81

0.81

0.17

0.81

0.84

0.95

0.96

0.88

0.94

0.96

0.93
Author 2, 

evaluation 1 

Author 2, 

evaluation 2

0.87 0.89 0.93 0.91 0.85 0.91

The significance o f the difference between the scores of two groups were assesses by 

the Wilcoxon matched pair sign rank tes t We conducted the test on each o f the four 

scorings, the mean o f two scorings from each author, and the average o f all four 

readings from both authors. There was no significant difference between tissue 

qualities (including both ECM and cell qualities) o f 0 and 24 relaxation groups (p-value 

was set at 0.05).

We chose not to publish these data because o f some concerns about the ir re liability. For 

example, although four readings statistically agreed for most o f the variables, i.e. the
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four scorings were statistically repetitive, the trend o f difference between 0 and 24 

relaxation groups was not always repetitive between 4 evaluations (Figures 5-4 to 5-6).

One possible explanation is that the duration of mechanical stimulation, i.e. 3 days, was 

not long enough to change tissue structural properties. Thus, the tissues were not very 

damaged and, moreover, our scoring scale was based on our most damaged tissues. So, 

the score o f 3 was given for not so extensively damaged tissue. Therefore, i t  was 

d ifficult to classify the specimens because they all had sim ilar structure.

Another possibility is that rat ta il tendon preparation for OM is very difficult. Since the 

samples are very small and hard, damage can occur during preparation. Figure 5-10 

demonstrates a fresh tendon which was damaged during preparation. To overcome this 

challenge, other preparation methods (e.g. Fung's method (Fung, Wang et al. 2009)) 

could be used.

Figure 5-10: A fresh sample which was damaged during preparation. Bar = 200 pm

We also scored TEM images for the ir fiber density. Moreover, we studied cell 

morphology o f TEM images (Figure 5-11). We did not publish these results either since 

these images were taken from very small sections of tendon. Therefore, these images 

may not represent the overall sample. To have more reliable results, many images 

should be taken from  different spots on the specimen which would be very expensive
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and time consuming. Moreover, the tissue preparation was not always adequate for cell 

observation and the responsible technician retired during this process.

Overally, semi-quantitative analysis was also inappropriate fo r our purpose

To overcome the challenges for studying cellular quality, we adapted an existing 

method to be able to observe whole tendon section. The method is fluorescent 

microscopy imaging o f cryostat sectioned samples. I t  w ill be discussed in  the following 

section.

Figure 5-11: Electron micrograph of rat tail tendon cross-section. 3000 x magnification was used. 

5.2.2 A new alternative method for cellular quality

To study cell morphology we adapted a technique using cryostat sectioning o f Dil 

stained tissues (Vybrant CM-Dil cell-labeling solution, v22888) (C. M. McNEILLY 1996). 

Dil is a fluorescent dye fo r cell membrane labeling. The sections were cut in cross- 

sectional direction.

Here is the procedure we use at Biometiss for staining and cryostat sectioning o f the 

tendons. After 3-day experiment, small biopsies (about 5mm-length) were taken from 

the tendons. Then they were fixed in formalin (10%) fo r 24 hours. Biopsies fixation was 

done firs t to preserve the cell shape. Fixed samples were then transferred to Dil
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solution (1.5 micro lite r D il / lm l PBS). It  should be noted tha t Dil can be applied on live 

and fixed tissues. Biopsies in Dil were incubated at 37°C fo r 24 hours. A fter 24 hours of 

incubation, the biopsies were ready for cryostat sectioning.

Cryostat is a device which is used for cutting very th in sections of frozen tissue. Another 

student at Biometiss already tried to cut cross-sections in paraffin but i t  did not w ork 

well. Thus, we tried cryostat technique for this purpose. To study cells o f stained tissues 

we need to prepare slides of tissue in micron thickness. Tissues are therefore frozen 

inside cryostat chamber using tissue freezing medium. Frozen tissue is needed, because 

tissues should be hard enough to not get crushed during sectioning. The steps for 

cryostat sectioning are:

1) Cryostat device is turned on and the temperature is set at -30°C at least 45 min 

before starting the procedure, ( it  takes almost 45 min to reach -30°C);

2) The specimen is mounted on metal surface using OCT tissue freezing medium, 

and frozen inside the cryostat cooling chamber. The tissue is kept straight using 

tweezers inside the cooling chamber until i t  is frozen. Fixed samples, in addition 

to preserve the cell shape, are useful because they are easier to be kept straight.

3) Once frozen, the metal surface is mounted on the microtome.

4) The sample is sectioned into 50microns-thick. (we chose this thickness based on 

our prelim inary experiments)

5) The sections are mounted on the microscopy slides using mounting media. 

"Vectashield hard set” (H-1500, Vector Laboratories Inc, Burlingame) mounting 

media is used at Biometiss. This mounting media has the ab ility  to stain the 

nucleus w ith  DAPI.

6) Microscopic images are captured from tendon cross-sections mounted in 

microscopy slides.
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To observe prepared sectioned samples, we tried fluorescence microscopy in light and 

confocal microscopes. Figure 5-12 demonstrates a fluorescence image taken from light 

microscopy.

Figure 5-12 : Fluorescence micrograph of rat tail tendon section under light microscopy. The sample is
stained with Dil.

Although the cells can be observed in this image, the exact shape of membrane is not 

clear because the focus cannot be done on the whole specimen thickness. Therefore, we 

tried another microscope, i.e. the confocal microscope, to observe our samples.

In confocal microscopy, successive images from different depths of the specimen can be 

taken. Therefore, each image is a very th in  section, called as O-thickness section, o f the 

specimen cross-section. Imaging th in sections enable us to set focus for each image and 

thus observe cell morphology much easier on clear images. For example, the shape of 

the membrane and the processes o f the cell could be recognized (Figure 5-13). 

Moreover, since the membrane edges are not blurry, i t  is possible to estimate the cell 

size and consequently compare different tendons. Finally, putting together the images 

from different depths, we get a 3D image o f cells.
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Figure 5-13: Fluorescence micrograph of rat tail tendon section under confocal microscopy. The picture 
is taken from very thin section of the tendon, referred as O-thickness, at 10 micrometer depth. The 

sample is stained with Dil and DAP1. In (a) solely the nuclei of the cells are shown in blue. In (b) only 
membranes of the cells are shown in red. In (c) both membrane and nuclei of the cells are demonstrated.
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However, we did not publish these data since we recently adapted this method at 

Biometiss and it  is in prelim inary steps and there are some challenges which s till need 

to be resolved.

The firs t challenge is to cut tendon sections perpendicular to tendon longitudinal 

direction. It raises either from the d ifficu lty  o f freezing tendon exactly perpendicular to 

the metal surface or from the d ifficu lty o f adjusting the cutting blade parallel to the 

sample section.

The second is that, although D il has the ab ility  to stain even fixed samples, i t  seems that 

Dil could not go through tendon sheath easily since the coloration at the center o f the 

tendon is always less than around i t  However, there is a concern that i f  we firs t stain 

and then fix the samples, the cell shape could undergo some changes since the staining 

process takes 24 hours.

Finally, there is an offset between discrete levels o f tendon cross section images, i.e. the 

axis which connects the centroids o f images is inclined. One probable possibility is that 

the samples are moving slightly inside microscopy slides. Also, it is possible that cut 

sections are not parallel to original tendon section. Since the desk o f confocal 

microscopy is anti-shaking, the possibility o f shaking desk has not been considered.

Hopefully, by removing these lim itations, we w ill be able to expand our knowledge of 

cell study based on this method in future experiments.
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6. Conclusion

In this chapter, concluding remarks based on the findings o f this research project w ill 

be presented. In order to stress the results, next section w ill brie fly review 

achievements o f the research along w ith  conclusions which were drawn from the 

results. Then, the novelty and contributions corresponding to these results are outlined. 

Afterwards, the burdens which lim ited this research project are explained. In the last 

section, some suggestions and propositions has been made in order to improve and 

follow up this research pro ject

Dans ce chapitre, sont presentees des conclusions basees sur les resultats de ce projet 

de recherche. Afin de mettre en lumiere les resultats, la prochaine section resume 

brievement les accomplissements de l’etude ainsi que les conclusions s'y rattachant 

Puis, la nouveaute et les contributions associees a ces resultats sont exposees. Par la 

suite, les lim itations de ce projet de recherche sont expliquees. Dans la dernifcre section, 

quelques suggestions et propositions sont faites pour ameliorer et continuer ce projet 

de recherche.

6.1 Summary

In this section, a summary of the w ork which has been done in this project to achieve 

the objectives is presented.

The two objectives o f this research study were:

1) To review the literature about viscoelasticity and viscoplasticity, and the way 

these two tissue properties affect live tissue response to mechanobiological 

stimulation;

2) To investigate whether diagnostic test o f physiological amplitude affects live 

tissue response to mechanical stimulation.
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A review article has been w ritten  to accomplish objective 1. In that article we 

mentioned that tissue exposes two macro-mechanical behaviors: viscoelastic and 

viscoplastic behavior. Tissue viscosity comes from frictional losses related to water 

content o f ECM and/or to the relative motion o f collagens. Tissue elasticity originates 

from collagen recoverable extension and collagen unit slid ing past another. Tissue 

plasticity is a result o f non-recoverable collagen extension related to high magnitude 

loading, or high repetitive loading which leads to ECM micro damages or non-reversible 

collagens sliding. Viscosity combines w ith  either elasticity or plasticity in live tissue 

depending on tissue quality (combination o f structural, compositional, and mechanical 

properties o f tissue) and applied load.

Tissue viscoelasticity and viscoplasticity affect live tissue response to applied load. This 

response includes ECM response and cellular response. Briefly, the applied load on ECM 

is scaled down to be sensed by cells through mechanotransduction mechanisms. Even 

under condition o f constant applied load, cell sense of applied load could change 

because o f viscoelasticity and viscoplasticity. Stress-relaxation and creep are examples 

of this situation. Therefore, cell response, which is repair o r degradation, changes and 

affects ECM structure. Consequently macro-mechanical behavior o f tissue, i.e. 

viscoelasticity and viscoplasticity, are affected.

Therefore, we concluded that it is essential to take into account viscoelasticity and 

viscoplasticity of tissue while developing a tissue stimulation protocol fo r in vitro 

research and in vivo clinical applications. In other words, tissue progression could be 

affected by some parameters o f the stimulation protocol because o f these two 

behaviors. The parameters which should be highlighted in designing stimulation 

protocols are:

1) Control-type o f stimulation: stress-controlled experiments affect tissue 

progression in a different manner than strain-controlled experiments.

2) Stimulus history: resting periods affect tissue progression ;
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3) Intelligent bioreactor or adjustable protocol: biophysical stim uli should be 

adjusted according to changes o f tissue quality resulting from tissue progression 

over time;

4) Mechanical characterization protocol: the methods used to  evaluate tissue 

progression over time could affect tissue progression.

To fu lfill objective 2, we designed a stimulation protocol to investigate whether 

applying stress-relaxation tests to evaluate tissue progression over time affect this 

tissue progression or n o t We conducted a 3-day experiment, based on this stimulation 

protocol, on freshly extracted tendons. The tendons were divided in to  tw o groups: the 

firs t group underwent no stress-relaxation test (0 relaxation) and the other group 

underwent 24 relaxation tests each day.

The results showed that applying stress-relaxation tests at physiological amplitude can 

modify tissue progression over time. The changes in modulus, a representative variable 

for mechanical properties, over the 3-day experiment were significantly different 

between the two groups. There was a decrease in mechanical properties of the 24- 

relaxation group even at the very beginning o f the experiment.

Since our mechanical characterization method was in-line and non-destructive, we 

were able to conduct structural characterization after mechanical test. However, the 

difference between the structures o f the two groups was not significant The results of 

our experimental study approved the conclusion of the review article. In fact, we 

proved that mechanical characterization protocol, as an important parameter in 

stimulation protocol, affects live tissue progression as a result of its macro-mechanical 

behavior.

Resume

Dans cette section, un resume du travail accompli dans ce projet pour realiser les 

objectifs sont presentes.
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Les deux objectifs de cette etude etaient:

1) De revoir la litterature a propos de la viscoelasticite et de la viscoplasticite, ainsi 

que de la fa£on dont ces deux comportements affectent la reponse des tissus 

vivants aux stimulations mecanobiologiques;

2) D’investiguer si des essais diagnostiques d'amplitude physiologique affectent la 

reponse de tissus vivants a des stimulations mecaniques,

Un article de type "revue" a ete ecrit pour accomplir le premier objectif. Dans cet article, 

nous mentionnons que les tissus sont exposes a deux comportements macro- 

mecaniques: la viscoelasticite et la viscoplasticite. La viscosity des tissues vient des 

pertes frictionnelles reliees au conteriu en eau de la matrice extracellulaire (MEC) et/ou 

du deplacement re la tif des unites de collagenes. L'elasticite des tissus provient de 

l’extension reversible du collagene mais aussi du glissement re latif des unites de 

collagene les unes par rapport aux autres. Enfin, la plasticite est le resultat de 

l ’extension non-reversible du collagene (associee & de grandes amplitudes de 

chargement ou a des chargements de grandes repetitions) menant a des micro- 

dommages dans la MEC ou a un glissement non-reversible du collagene. Dans les tissus 

vivants, la viscosite se combine avec l'elasticite ou la plasticite dependamment de la 

qualite du tissu (combinaison des proprietes structurelles, compositionnelles et 

mecanique) et du chargement applique.

La viscoelasticite et la viscoplasticite affectent la reponse des tissus au chargement 

applique. Cette reponse inclus la reponse de la MEC et la reponse des cellules. 

Brievement, un chargement applique sur la MEC est reduit de fa^on a etre ressenti par 

les cellules via des mecanismes de mecanotransduction. Meme si un chargement 

constant est applique macroscopiquement au tissu, le chargement local ressenti par les 

cellules pourrait varier dans le temps a cause de la viscoelasticite et de la 

viscoplasticite. La relaxation de contrainte et le fluage sont des exemples de cette 

situation. C'est ainsi que la reponse cellulaire (reparation ou degradation de la MEC) 

varie aussi dans le temps et affecte la qualite de la MEC. En consequence, les
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comportements macro-mecaniques que sont la viscoelasticite et la viscoplasticite sont 

affectes.

Ainsi, nous concluons qu’il est essentiel de considerer la viscoelasticite et la 

viscoplasticite des tissus lors du developpement d'un protocole de stimulation pour la 

recherche in vitro  et les applications cliniques in vivo. En d’autres mots, la progression 

pourrait etre affectee par des parametres du protocole de stimulation a cause de ces 

deux comportements. Les parametres qui doivent etre mis en lumiere so n t:

5) Type de controle pour les stimulations: Les experimentations menees sous un 

controle en contrainte affectent la progression des tissus differemment que les 

experimentations menees sous un controle en deformation;

6) Histoire du chargement: Des periodes de repos affectent la progression des 

tissus;

7) Bioreacteurs intelligents ou protocoles ajustables: Les stim uli biophysiques 

devraient etre ajustes selon les changements dans la qualite des tissus resultant 

de la progression des tissus dans le temps;

8) Protocole de caracterisation mecanique : Les methodes utilisees pour evaluer la 

progression des tissus dans le temps pourraient affecter la progression des 

tissus.

Pour repondre a l'ob jectif 2, nous avons con^u un protocole de stimulation afin 

d’investiguer si l'application d’essais de relaxation de contrainte pour evaluer la 

progression des tissus dans le temps affecte ou non la progression des tissus. Nous 

avons realise une experimentation de trois jours, bas£e sur ce protocole de stimulation, 

sur des tendons fraichement extraits. Les tendons ont ete divises en deux groupes : Le 

premier groupe n'a subi aucun essai de relaxation de contrainte (0 relaxation) tandis 

que le second groupe a et6 soumis & 24 essais de relaxation de contrainte 

quotidiennement
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Les resultats ont demontre que l'application d'essais de relaxation de contrainte 

d'amplitude physiologique peut modifier la progression des tissus dans le temps. Les 

changements de module, une variable representative pour les proprietes mecaniques, 

etaient significativement differents dans les deux groupes, et ce, sur les tro is jours 

d'experimentation. II y avait une dim inution relative dans les proprietes mecaniques du 

groupe de 24 relaxations des le debut de l'experimentation.

Puisque notre methode de caracterisation etait « en ligne » et non-destructive, nous 

avons pu realiser des essais de caracterisation structurale apres les tests mecaniques. 

Toutefois, la difference entre les deux groupes etait non significative.

Les resultats de notre etude experimentale appuient les conclusions de Particle de type 

« revue ». En fait, nous avons demontre que le protocole de caracterisation mecanique 

affecte la progression des tissus vivants a cause de ses comportements macro- 

mecaniques.

6.2 Contributions

This section outlines the original contributions o f this project.

Since tissue mechanobiology is an interdisciplinary field, i t  is difficult to have all the 

knowledge from biology and mechanics. Therefore, in  the review article, we tried  to link  

these two disciplines. We highlighted the viscoelasticity and viscoplasticity o f live 

tissue to notify about the effect of these behaviors on live tissue response to biophysical 

stimulations. This was the firs t original contribution o f this project.

Moreover, we found that using diagnostic tests, even at physiological amplitude, could 

affect tissue progression over time. Therefore, our answer to this paradoxical question: 

"How can we measure the tissue progression over time i f  i t  responds to our measurement 

methods?" is to use the stimulation itse lf to observe tissue progression rather than 

diagnostic tests. I t  was the second original contribution.

Finally, as the last novelty, we adapted a new method at Biometiss to characterize cell 

quality w ith  fluorescent microscopy imaging of tendon cross-sections in confocal
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microscope. We achieved the desired thickness o f samples (50 m icron) w ith  cryostat 

sectioning. However, this method should s till be improved to get publishable results.

Contributions

Cette section met en re lie f les contributions originales de ce projet.

Puisque la mecanobiologie est un domaine interdisciplinaire, il est d iffic ile  d'avoir toute 

la connaissance de la biologie et de la mecanique. Ainsi, dans l'article de type « revue », 

nous avons tente de re lier ces deux disciplines. Nous avons mis en lumiere la 

viscoelasticite et la viscoplasticite des tissus vivants pour souligner l ’effet de ces 

comportements sur la rdponse des tissus vivants aux stim u li mecaniques. Ceci etait la 

premiere contribution originale du present projet.

De plus, nous avons demontre qu’u tiliser des essais diagnostiques, meme d'amplitude 

physiologique, peut affecter la progression des tissus dans le temps. C'est pour quoi, 

notre reponse a la question paradoxale: « Comment pouvons-nous mesurer la 

progression d'un tissu dans le temps s'il repond a nos methodes de mesure? » consiste a 

utiliser la stimulation elle-meme pour observer la progression d'un tissu p lu to t que des 

essais diagnostiques. Ceci constitue notre deuxieme contribution originale.

Finalement, comme derniere nouveaute, nous avons adapte une nouvelle methode dans 

Biometiss pour caracteriser la qualite des cellules a l'aide d’images de sections 

transversales de tendon prises sous microscopie a fluorescence. Nous avons obtenu 

l'epaisseur desiree des echantillons (50 microns) a l'aide d'un cryostat Toutefois, cette 

methode do it toujours etre amelioree afin d'obtenir des resultats publiables.

6.3 Lim itations

This section describes the lim itations which restricted and decreased some potential 

results.
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First, the bioreactor occasionally did not provide the exact displacement i t  was assigned 

to. Moreover, in some cases the load cell and/or encoder were malfunctioning. In all 

cases the related tendons were discarded.

Second, there were some challenges for structural characterization of tendon:

• For quantitative structural characterization using Nl-Vision software, there was 

a difficulty to set an appropriate and repetitive contrast, and consequently 

proper fitting  o f black-red image w ith  the origin image. This would make a 

significant error in quantifying tissue structural quality.

• For semi-quantitatively structural characterization using the Bonar-Movin 

scoring scale, there were some difficulties fo r scoring the images. The scoring 

scale was based on the most damaged tissues while most of the samples from 

both groups (O-relaxation and 24-relaxation tests) were not much damaged. 

Moreover, because o f some imperfections in tissue preparation for OM 

microscopy, there were some damage signs (e.g. collagen partial tears, or large 

spaces between fibers) which were not the result of stimulation. These 

difficulties led to non-repetitive scorings and/or mistaken scorings.

Finally, as the framework of this thesis, we conducted the experiment based on only one 

protocol and on only one tissue quality i.e. freshly extracted tendons. To have a better 

understanding of how diagnostic tests affect tissue progression other protocols could 

be designed, e.g. using more or less repetitions o f stress- relaxation tests each day. 

Moreover, the protocols could be tested on damaged tissue to investigate whether the 

effect o f diagnostic test on tissue progression changes or n o t

Limites

Cette section decrit les limites qui ont affecte negativement des resultats potentiels.
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Premierement, il a rriva it que le bioreacteur ne fournisse pas le deplacement exact 

demande. De plus, il a rriva it que la cellule de force e t/ou  l'encodeur fonctionne mal. 

Dans tous ces cas, les tendons affectes etaient exclus de l'analyse.

Deuxiemement, nous avons rencontre des defis dans la caracterisation structurale des 

tendons:

• Pour la caracterisation structurale quantitative a l’aide du logiciel Nl-Vision, il 

etait d ifficile de fixer un contraste approprie et repetitif et, consequemment, de 

transformer adequatement l'image originale en image rouge et noire. Ceci creait 

des erreurs significatives lors de la quantification de la qualite structurale des 

tissus.

• Pour la caracterisation structurale semi-quantitative a l'aide de l'echelle de 

Bonar-Movin, nous avons rencontre certaines difficultes a noter les images. 

L'echelle de notation etait basee sur les tissus les plus endommages alors que la 

majorite des echantillons des deux groupes (0 et 24 relaxations) n'etait pas si 

endommagee. De plus, a cause de certaines imperfections dans la preparation 

des tissus pour la microscopie optique, il y avait des signes de dommages (e.g. 

dechirures partielles du collagene ou larges espaces entre les fibres) qui 

n'etaient pas le resultat de la stimulation. Ces difficultes ont mene a des notes 

non repetitives ou erronees.

Finalement, dans ce projet, nous avons mene une experimentation basee sur seulement 

un protocole et une qualite de tissu soit des tendons fraichement extraits. Pour obtenir 

une meilleure comprehension de comment les essais diagnostiques affectent la 

progression des tissus, d’autres protocoles pourraient etre con^us, par exemple en 

utilisant plus ou moins de repetitions des essais de relaxation de contrainte chaque 

jour. De plus, les protocoles pourraient etre testes sur des tissu endommages pour 

investiguer si l'effet des essais diagnostiques sur la progression de tissus changerait ou 

non.
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6.4 Future work

There are several potential studies which could be pursued following this research 

study in order to extend our understanding o f tissue mechanobiology.

First, as mentioned in the previous section, we conducted the stimulation protocols 

including 0 or 24 relaxation tests. We could design other protocols by changing the 

parameters o f the stimulation protocol e.g. changing the numbers and/or duration of 

relaxation test, shortening or lengthening the rest periods, etc. Moreover, we could 

conduct the experiment on damaged tissue instead o f healthy one. By applying these 

new experimental conditions, whether the effect o f diagnostic tests on tissue 

progression increases or decreases or remains constant could be investigated.

Second, by using the results o f this study, the stimulation protocols could be optimized. 

For example, since diagnostic tests could modify tissue progression over time, they 

should be considered as part o f the stimulation not to introduce more energy to tissues. 

As another example, considering that stress-controlled and strain-controlled 

experiments modify tissue progression in different ways, we could design stimulation 

protocols w ith  a combination o f both control types. Using each control type at different 

time points makes i t  possible to change the type o f tissue progression in order to 

achieve the desired tissue quality. These optimized stimulation protocols could be used 

to improve tissue quality or to optimize the healing o f damaged tissues.

Finally, in order to be able to conduct in vitro  experiments in in vivo conditions, in vitro 

stimulation parameters should be translated into in vivo parameters. This arises many 

questions and thus needs to be deeply studied. Some parameters, such as frequency and 

rest periods, could merely be applied to in vivo i.e. the frequency of in vitro  stim uli and 

the rest periods between in vitro stim uli could simply be adjusted to daily or 

occupational activities. For some other parameters, such as stimulation control type 

(stress-control vs strain-control), the corresponding situation in  daily o r occupational 

activities (such as walking, and repetitive manual handling) is not fu lly  clarified. 

Therefore, i t  is challenging to translate in vitro  studies to  in vivo applications. 

Consequently, more investigation is required. For example, we could investigate
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whether: passive motions could be considered as a strain-controlled in vivo experiment, 

active motions could be considered as stress-controlled in vivo experiment, etc.

The results o f this w ork could be helpful in developing methods o f rehabilitation and 

improving live tissues quality through the design o f more optim ized treatment 

strategies based on mechanobiology for both bioreactor experiment and clinical 

application.

Travaux future

II y a plusieurs etudes potentielles qui pourraient etre realises pour poursuivre cette 

etude afin d’approfondir notre comprehension de la mecanobiologie tissulaire.

Premierement, tel que mentionne dans la section precedente, nous avons realise des 

protocoles de stimulation incluant 0 et 24 essais de relaxation de contrainte. Nous 

pourrions concevoir d'autres protocoles en changeant les parametres de stimulation, 

par exemple en changeant le nombre et/ou la duree des essais de relaxation de 

contrainte, en raccourcissant ou en allongeant les periodes de repos, etc. De plus, nous 

pourrions realiser l'experimentation sur des tendons endommages p lu to t que sur des 

tendons sains. En appliquant ces nouvelles conditions expSrimentales, il serait possible 

d'investiguer si l ’effet des essais diagnostiques sur la progression des tissus diminue, 

augmente ou demeure identique.

Deuxiemement, en utilisant les resultats de cette etude, les protocoles de stimulation 

pourraient §tre optimises. Par exemple, puisque des essais diagnostiques pourraient 

influencer la progression des tissus dans le temps, ils devraient §tre consideres comme 

faisant partie du protocole de stimulation parce qu'ils induisent de la nouvelle energie 

dans les tissus. Comme autre exemple, considerant que des experimentations sous 

controle en contrainte vs en deformation influences differemment la progression des 

tissus, nous pourrions concevoir des protocoles combinant les deux types de controle. 

En utilisant chaque type de controle a differents moments rendrait possible de changer 

la progression du tissu afin d'obtenir la qualite tissulaire desires. Ces protocoles de
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stimulation optimises pourraient etre utilises pour ameliorer la qualite des tissus ou 

pour optimiser la guerison des tissus endommages.

Finalement, afin de pouvoir realiser des experimentations in vitro  sous des conditions 

in vivo, les parametres de stimulation in vitro  doivent etre traduits en parametres de 

stimulation in vivo. Ceci souleve plusieurs questions et necessite done d'etre etudie en 

profondeur. Quelques parametres pourraient simplement etre appliques in vitro. Par 

exemple, la frequence de stim uli in vitro  et les periodes de repos entre les stim uli in 

vitro pourraient simplement §tre ajustees aux activites quotidiennes ou au travail. Pour 

d’autres parametre comme le type de controle (controle en contrainte vs controle en 

deformation), les situations correspondantes dans les activites quotidienne ou au 

travail (e.g. marcher, realiser une tache repetitive au travail) ne sont pas totalement 

clarifiees. Done, il est difficile de traduire les etudes in vitro  en applications in vivo. En 

consequence, plus d'investigation sont requises. Par exemple, nous pourrions 

investiguer si des mouvements passifs peuvent etre considerer comme des 

experimentations sous controle de deformation in vivo, si des mouvements actifs 

peuvent etre consideres comme des experimentations sous controle en contrainte in 

vivo, etc.

Les resultats de ce travail pourra it etre benefiques au developpement de methodes de 

readaptation et a l'amelioration de la qualite des tissus via la conception de strategies 

optimisees basee sur la mecanobiologie tant pour des experimentations en bioreacteurs 

que pour des applications cliniques.
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Resume

La caracterisation des tissus est une etape majeure dans les etudes mecanobiologiques. 
En effet, a l'aide des methodes de caracterisation, la qualite des tissus, soit la 
combinaison des proprietes structurelles, compositionnelles et mecaniques, peut etre 
determinee. Ce projet de maftrise focalise sur les methodes de caracterisation 
mecanique pour les etudes in vitro  en bioreacteur. A travers toutes les methodes de 
caracterisation mecanique, nous proposons l’utilisation de celles qui s o n t: 1) non
destructives (i.e. qui offrent la possibility de realiser d'autres essais de caracterisation 
apres les essais de caracterisation mecaniques) et 2) en-ligne (i.e. qui permettent 
l ’observation de la progression des tissus durant l’experimentation, et ce, sans devoir 
deplacer les specimens d'une machine vers une autre). Toutefois, la caracterisation 
mecanique non-destructive en-ligne souleve la question a savoir si cette methode 
d'observation utilisee durant l'experimentation modifie revolution des tissus dans le 
temps.

Ainsi, le but de ce projet de maitrise etait d'approfondir nos connaissances sur les 
parametres qui pourraient affecter la qualite des tissus conjonctifs mous durant une 
experimentation in vitro  en bioreacteur. Ceci passe par une meilleure comprehension 
de la viscoelasticite et viscoplasticite, deux comportements cles des tissus, qui affectent 
l ’impact de ces parametres sur la reponse des tissus vivants a des stimuli 
biophysiques. Done, les deux objectifs de ce projet y ta ien t:

1. De revoir la litterature portant sur deux comportements mycaniques des tissus, 
soient la viscoelasticite et la viscoplasticite, et la fa^on avec laquelle ils affectent 
revolution des tissus sous stim uli biophysiques;

2. D'investiguer si l ’utilisation d'essais diagnostiques d'amplitude physiologique 
pour quantifier les proprietes mecaniques des tissus peut affecter leur evolution 
dans le temps.

Dans ce memoire, nous expliquons que la viscoelasticite et la viscoplasticite des tissus 
proviennent de la structure et de la composition de la matrice extracellulaire. Nous 
decrivons egalement la fa^on avec laquelle ces comportements affectent la competition 
dynamique entre la reparation, la degradation enzymatique et la degradation 
mecanique de la matrice extracellulaire sous stimuli biophysiques. De plus, nous 
specifions des parametres de stimulation, tels que le type de controle ou l'h istoire des 
stimuli, qui pourraient affecter revolution des tissus en reponse a des stimuli 
biophysiques a cause de la viscoplasticite et viscoyiasticite.

Aussi, nous relatons les resultats d'une experimentation de trois jours realisees sur des 
tendons fraichement extraits pour investiguer si l'application d’essais de relaxation de 
contrainte d'amplitude physiologique affecte revolution des tissus sous stimuli 
mecaniques. Nous avons regroupe les tendons selon le protocole de caracterisation (0 
ou 24 essais de relaxation d'amplitude physiologique chaque jou r) et nous avons 
compare Involution des groupes dans le temps. Les essais de relaxation de contraintes 
d'amplitude physiologique ont modifie revolution des tendons en reponse aux stimuli
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mecaniques in vitro. De fa?on generate, le module pointe a augmente dans le temps 
pour le groupe de 0 essai de relaxation de contrainte alors qu 'il a d'abord diminue puis 
legerement augmente pour le groupe de 24 essais de relaxation de contrainte chaque 
jour. La difference entre les deux groupes etait significative. Done, l'insertion d’essais de 
relaxation de contrainte d'amplitude physiologique pendant les periodes de repos entre 
les stimuli mecaniques peut influencer revolution des tissus dans le temps.

Nous concluons qu’il importe de ten ir compte de la viscoelasticite et de la 
viscoplasticite des tissus lors du developpement d’un protocole de stimulation pour une 
etude en bioreacteur ou encore pour une application clinique.

Mots cles : tissus conjonctifs mous, mecanobiologie, evolution des tissus, proprietes des 
tissus, protocole de caracterisation, viscoelasticite, viscoplasticite, en-ligne, non- 
destructif



www.manaraa.com

Abstract

Tissue characterization is a major step in tissue mechanobiological studies. By 
characterization methods, tissue quality i.e. the combination o f tissue structural, 
compositional and mechanical properties, is determined. This research focuses on 
mechanical characterization methods. Among all mechanical characterization methods, 
we propose those ones which are: 1) Non-destructive, (i.e. that reserves the capability 
of doing other characterization tests at the end o f mechanical test; and, 2) In-line, (that 
enables tissue progression observation during experiment, and w ithout transferring the 
specimen from one apparatus to another). However, in-line characterization raises the 
question of whether conducting tissue observation methods during experimentation 
modifies tissue progression over time.

Therefore, the purpose o f this study was to deepen our knowledge about the 
parameters which could affect tissue quality during mechanical testing. This requires a 
better understanding o f viscoelasticity and viscoplasticity, two key behaviors o f tissue, 
affecting the impact o f these parameters (e.g. tissue quality, stimulation parameters) on 
the response o f live tissue to biophysical stimuli. Thus, the objectives o f this study were:

1. To review the literature to find information about two mechanical behaviors of 
tissue i.e. viscoelasticity and viscoplasticity, and the way they affect tissue 
properties

2. To investigate whether diagnostic tests, as mechanical characterization tests to 
observe tissue properties, affect tissue progression

We explain that viscoelasticity and viscoplasticity o f tissue originate from  structure and 
components o f the extracellular matrix. We also describe the way they affect tissue 
dynamic competition between repair, enzymatic degradation and mechanical 
degradation o f the extracellular matrix. Moreover, we specify some tissue stimulation 
parameters, such as stimulation control type or stimulus history, which could affect 
tissue progression in response to biophysical stim uli because o f viscoelasticity and 
viscoplasticity.

Moreover, by conducting a series o f 3-day experiments on freshly extracted tendons, we 
investigated whether applying "stress relaxation" tests at physiological amplitudes 
affects tissue response. We divided the tendons into two groups based on the 
characterization protocol (24 and 0 stress relaxation tests each day), and compared the 
progression o f these groups over time. The stress relaxation tests at physiological 
amplitude modified tissue response to mechanical stim uli in vitro. In general, the 
modulus increased fo r 0 stress relaxation tests, while it  first decreased and then 
increased slightly for 24 stress relaxation tests each day. The difference o f mechanical 
properties between the two groups was significant. Therefore, applying stress 
relaxation tests at physiological amplitude during the rest periods between mechanical 
stimuli can affect live tissue progression over time.

v
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Therefore, it  is essential to take into account the viscoelasticity and viscoplasticity of 
tissue while developing a stimulation protocol fo r bioreactor studies or clinical 
applications.

Keywords: mechanobiology, tissue progression, tissue properties, characterization 
protocol, mechanical characterization, viscoelasticity and viscoplasticity, in-line, non
destructive.
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1. In tro d u c tio n

Mechanobiology is the science studying tissue remodeling in response to 

physical/mechanical environmental stimulation (van der Meulen and Huiskes 2002). 

The major contributors to mechanobiology are: mechanical loading, the mechanisms by 

which cells could sense mechanical loading (mechanotransduction), cell response to 

received biophysical signals, and tissue progression based on mechanical loading and 

cell response.

Mechanobiology may play a major role in preventing and healing mechanically based 

tissue disorders. In addition, improvement o f the function o f engineered tissues 

depends on progress in mechanobiology (van der Meulen and Huiskes 2002).

A major step in mechanobiological studies is tissue characterization. Tissue 

characterization includes the methods which extract information about tissue quality 

i.e. compositional, structural, and mechanical properties o f tissue. As it  is observed in 

Chapter 2 (literature review), different characterization methods exist and are used in 

different laboratories. Unfortunately, most laboratories use destructive methods for 

mechanical characterization at the end o f the experimental protocol. Therefore, by the 

end o f experiment, no complementary characterization o f compositional and structural 

properties can be conducted on tissue.

In our view, among all available methods for tissue mechanical characterization, in-line 

non-destructive tests have more advantages. W ith in-line monitoring, the data during 

experimentation are available at regular intervals thus tissue progression over time can 

be monitored. Moreover, since the stimulation and characterization methods are 

conducted inside the same apparatus (for in v itro  studies), the errors and damages 

which may occur w ith  transferring the samples from one apparatus to another are 

eliminated. In addition, in non-destructive tests conducted at regular intervals, samples 

can be self-compared, thus reducing the number o f samples and animals are needed. 

The data acquired from these self-compared samples are thus more reliable because

1
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there is no intra-sample variability. Finally, at the end of non-destructive tests, other 

complementary characterization tests can be conducted.

All the bioreactor experimentations at Biometiss1 have been carried out based on in

line non-destructive characterization protocols. For most o f them, tissue stimulation 

protocols (a series of operations applied on tissue during experiment including: 

preloading, preconditioning, cyclic loading-unloading, resting, etc.) have been designed 

based on the same standards. For example preconditioning, amplitude and duration of 

preloading and stress-relaxation tests and mechanical stimuli, duration o f resting 

between mechanical stimuli, etc are standardized.

Although it  is very useful to have the information o f tissue progression over time, it 

raises a concern. Does tissue react to our characterization method and does it  alter its 

progression over time? In other words, does the method used to observe tissue during 

the experiment affects experimental results?

These concerns were questioned in the cell mechanics field by (Bao and Suresh 2003). 

The authors asked this paradox: "how can we measure the mechanical behaviour of 

living cells if  they react to our measurement tools? To our knowledge, this is the firs t 

time this topic was discussed at the tissue level. This issue is very im portant because 

the effect, of methods used to characterize tissue, on tissue response, could make the 

experimental result un-reliable.

The objectives of this research project were:

1. To review the literature about two key behaviors of fibrous load bearing 

tissues (i.e. viscoelasticity and viscoplasticity) and explain how they affect 

live tissue response to mechanical characterization;

The effect o f viscoelasticity and viscoplasticity on tissue response is a very im portant 

subject which must be taken into account for treating and preventing tissue disorders 

and improving tissue quality based on mechanobiology. For example, since fibrous load

1 The laboratory at University of Sherbrooke working in the field of Mechanobiology.
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bearing tissues are viscoelastic and viscoplastic, the response of these tissues w ith  two 

different qualities (e.g. healthy vs. damaged) to an identical mechanical stimulation 

could be different (e.g. constructive vs. destructive). Moreover, because of 

viscoelasticity and viscoplasticity o f tissues, changes in stimulation parameters, (e.g. 

changes in nature o f loading: stress vs. strain or static vs. cyclic) could make an 

essential difference in tissue responses.

2. To investigate if diagnostic tests conducted at regular intervals affect live 

tissue response or not.

Either "stimulation protocol” o r "diagnostic test", i.e. mechanical tests interspersed at 

time intervals during the stimulation protocol used to observe tissue progression over 

time, could be used as tissue mechanical characterization test. In either o f these 

methods, some mechanical variables are measured (e.g. load and/or displacement) or 

calculated (e.g. stiffness and/or hysteresis). These variables represent the tissue 

mechanical quality. I f  we measure or calculate these variables at regular intervals, we 

w ill have tissue progression over time.

Using diagnostic tests to evaluate tissue progression over time has an advantage over 

using stimulation protocols in which parameters such as frequency or amplitude could 

change between different experiments, in different laboratories, in d ifferent days, and 

on different tissues. Using diagnostic tests (e.g. stress relaxation tests) makes it  possible 

to define the "diagnostic test", in which parameters such as frequency or amplitude 

remain constant between different experiments, as a "reference' standard" in all 

experiments. However, there is a concern whether diagnostic tests affect tissue 

response or not.

W ith these objectives in view, the thesis contains two articles, one fo r each objective, 

and is divided into six Chapters. In Chapter 2, compositional, structural, and mechanical 

tendon properties are briefly explained. I t  is w orth  noting that the hypotheses and the 

discussions are not lim ited to tendons but are attributed to  all fibrous-load- bearing 

tissues. Some methods used in literature for compositional, structural, and mechanical

3
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characterization are then presented to have an overview o f the characterization 

methods used in tissue quality.

In Chapter 3, the origin o f viscoelasticity and viscoplasticity in tissues and the way they 

affect live tissue properties are explained. This chapter has been submitted as a review 

article.

Another article has been w ritten  to fu lfill objective 2 and is presented in  Chapter 4. As 

reported in this manuscript, live healthy tendons were subjected to physical stim uli at 

physiological amplitude in vitro. Stress-relaxation tests were conducted at regular 

intervals to observe tissue progression over time. We investigated i f  stress-relaxation 

tests affect tissue progression o r not.

In Chapter 5, unpublished results are presented. These results include methods we used 

at Biometiss to characterize tendon structural ECM and cellular quality using 

microscopic images.

Finally, a discussion is presented in Chapter 6 (in both English and French), drawing 

conclusions about this w ork and proposing future studies.

4
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2. State-Of-The-Art

This chapter reviews important literature relative to the presented master's project. It 

is divided in two sections.

In the firs t section, we w ill introduce compositional, structural and mechanical 

properties o f tendons. A combination o f these properties could be defined as tissue 

quality. In the study o f tendon physiology, pathology, or healing an im portant step is 

determining tissue quality. One o f the most important fields o f tissue study which needs 

tissue quality information is mechanobiology. We w ill therefore end the firs t section 

w ith  a b rie f explanation o f mechanobiology but also o f mechanotransduction, the 

important mechanisms which are involved in mechanobiological remodeling o f tissue.

In the second section, we w ill review some literature to highlight the methods of 

gathering information regarding tissue quality, i.e. characterization methods. The 

mentioned characterization methods are the ones which have been mostly used in the 

literature.

2.1 Tendon compositional properties

Tendons are those connective tissues which connect muscle to bone. Tendons generally 

consist o f the ECM and cells (tenocytes) which are, respectively, ine rt and active 

components o f tendons. Although these two components are in a closed and 

bidirectional interaction together, we can devote the mechanical behavior o f the tendon 

mostly to the ECM, and consider cells as responsible for remodeling o f tissue (or mainly 

the ECM) (Kalson, Holmes et al.).

The ECM contains almost 70% water and 30% solid (Margareta Nordin and L. 2001). 

Solid part contains mostlycollagen fiber, some elastin, as well as ground substance 

(Margareta Nordin and L. 2001).

Collagen and elastin are structural proteins o f the ECM. In fact, the biomolecules in the 

ECM could be divided into three subgroups: 1) structural proteins like collagen and 

elastin, 2) specialized proteins like fibronectin, and 3) proteoglycans (Xu 2008).

5
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Collagen is the most im portant component and provides the strength o f tendons against 

applied tensile loads. There are 19 different kinds of collagens of which the most 

abundant type in tendons are type 1 collagens. Their parallel alignment along the 

tendons let them resist tensile load in this direction.

Elastin f ibers, the smallest representatives o f the ECM, represent 1-2% o f dry weight of 

tendon. These proteins are associated w ith  collagen fibers not only to w ithstand tensile 

loads, but to provide elasticity to tendons (Margareta Nordin and L. 2001; Sharma P 

2006).

Ground substance constitutes the remainder. It consists mainly o f proteoglycans, matrix 

glycoproteins and water (Chun k 2003). Glycosaminoglycans, a major component of 

proteoglycans, are large negatively charged and hydrophilic molecules. Because of the 

repulsive force between tw o negative charges, glycosaminoglycans offer tissue 

resistance to compression (Chun k 2003) and may play a role in the spacing o f collagen 

fibres (Hansen, Weiss et al. 2002). They also capture the m ajority of the extracellular 

water (Margareta Nordin and L. 2001) and create a gel-like substance in the 

collagenous matrix (Margareta Nordin and L. 2001). Finally, it is believed that 

molecules from the ground substance play an im portant role in relative motions of 

collagen fibrils in mechanically loaded tendons [(Mosler, Folkhard et al. 1985); (H R C 

Screen 2004)].

2.2 Tendon structural properties

The hierarchical structure of a healthy tendon is shown in Figure 2-1. Tropocollagens 

(collagen molecules) unite into collagen fibrils, collagen fibers2, subfascicles (prim ary 

bundles), and fascicles (secondary bundles). Several fascicles constitute tertiary 

bundles (Liu, Ramanath et al. 2008).

2 There have been some misunderstandings in literature regarding using "fiber" and "fibril". In some 
texts, these two terms have been used interchangeably.
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Primary, secondary and te rtia ry fiber bundles are covered by a th in layer called 

endotenon and the whole tendon is surrounded by another thin layer called epitenon 

(Sharma P 2006).

Tendon cells (tenocytes), which are responsible for production o f collagen fibers and 

of ground substance, are located between fibers. They have an elongated shape when 

observed in the tendon's longitudinal orientation (Margareta Nordin and L. 2001). 

Whereas in cross-section, they appear as star-shaped cells (C M McNeilly 1996).

Some structural criteria to classify the quality include cell shape, collagen organization, 

cell-ECM interaction, cell density, etc. Methods could be divided into three groups: 

qualitative, semi-quantitative, and quantitative which are introduced in the three 

following sections.

We explain these methods, since they are used in clinical applications. Moreover, in our 

in vitro  experimentations, we use these methods to compare the structural quality of 

different groups of samples.

7
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Figure 2-1: Schematic structure of a normal tendon (Liu, Ramanath et al. 2008)

2.2.1 Qualitative characterization

One method fo r the characterizing tissue quality is histology, i.e. characterization of 

tissue structure using microscopic images. Microscopic images are mainly from light 

(optical) microscopy (OM), and electron microscopy (EM). They both have an objective 

lens to magnify the structures and are used in biology and material science fields 

(Alberts B 1994). In OM, a photon beam is radiated to the objective lens to visualize the 

purpose structure, while in EM, the radiated beam is made up of electrons (Keith 

Wilson 2005). This difference in the type o f radiated beams makes each microscope 

appropriate for special purposes. The electron microscope provides a much higher 

resolution and magnification than optical microscope. Therefore, to resolve very small 

objects, e.g. small molecules w ith  approximate size o f 1 nm, EM should be used.

Table 2-1 demonstrates im portant structural characteristics o f healthy and 

tendinopathic tendons (Xu 2008).

8
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Table 2-1: Comparison of normal and tendinopathic tendon by microscopy (Xu 2008)

Findings Macroscopic Optical microscopy 

(longitudinal sections)

Electron microscopy 

(transversal sections)

Normal

tendon

Brilliant white

Fibroelastic

Firm texture 

alignment

Organized parallel collagen 

bundles

Spindle shape tenocyte nuclei 

Nuclei parallel alignment

Densely packed collagen fibers

Uniform in diameter and 

orientation of collagen fibers

Tendinopath 

ic tendon

Grey or brown

Tissue is thin, fragile 

and disorganized

Loose texture

Disorganized collagen bundle

Increased ground substance 

consisting of proteoglycan and 

glycosaminoglycan (GAG)

Large mucoid patches and 

vacuoles between fibers3 

(Figure 2-2)

Round with darker-staining 

tenocyte nuclei

Markedly increased number of 

tenocyte nuclei with loss of 

parallel alignment

Increase of vascular and nerve 

ingrowths

Angulation (Figure 2-3), 

bubble formation (Figure 2-4) 

of collagen fibers

Variation in the diameters and 

orientation of collagen fibers

Hypoxic 4(Figure 2-5) changes 

in tenocyte (lipid vacuoles5, 

enlarge lysosomes 5and 

degranulated endoplasmic 

retinaculum7 (Figure 2-5))

3 One type of tendon degeneration. Accumulation of large mucoid patches and vacuoles filled with GAGs 
and proteoglycans between collagen fibers Peter A. Huijbregts, M., MHSc, PT Scott E. Smith, MSc, OT 
(1999). "Tendon Injury: A Review." The lournal of Manual & Manipulative Therapy 7: 71-80.
4 One type of tendon degeneration which is deprivation of adequate oxygen.
5 Lipid accumulation
6 Lysosomes are one of subcellular components which contain waste-breaking enzymes.
7 The endoplasmic reticulum (ER) is a continuous membrane which has many different functions such as : 
translocation of proteins across the ER membrane; the integration of proteins into the membrane; etc. 
Gia K. Voeltz, M. M. R. (2002). "Structural organization of the endoplasmic reticulum." EM BO reports 
3(10): 944-950.

9
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Figure 2-2: Light microscopy of a ruptured Achilles tendon from a twenty-nine-year-old woman. The 
arrow shows the thin and fragile collagen fibers, and the star shows the large vacuoles among the fibers.

(Kannus P 1991)

Figure 2-3: Transmission electron microscopy of a ruptured extensor pollicis longus tendon from a sixty- 
four-year-old woman. The arrow shows the angulation of the collagen fibrils (Kannus P 1991)



www.manaraa.com

Figure 2-4: Transmission electron microscopy of a ruptured Achilles tendon from a thirty-four-year-old 
man. The arrow shows bubble formation involving some fibrils. (Kannus P 1991)

Figure 2-5: Transmission electron microscopy of a ruptured Achilles tendon from a thirty-three-year-old 
man. The image shows a high-level hypoxic degenerated tenocyte which includes lipid vacuoles (LV), 

enlarged lysosomes (L),and degranulated endoplasmic retinaculum (E) (Kannus P 1991)
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2.2.2 Semi-quantitative characterization

Most tissue histological characterization studies do not quantify the properties, but use 

description o f the changes from healthy to damaged tissue histology (Nicola M affiilli 

2008). The method o f description o f structural changes can lead to inadequacy in 

classifying the different levels o f tissue injury. This misunderstanding and uncertainty 

about tissue condition may result in inconsistent diagnosis between specialists (Nicola 

Maffulli 2008).

To avoid this uncertainty in diagnoses by different specialists, some scoring methods 

have been suggested to be used to classify the tendinopathic tendons (Nicola Maffulli

2008). These methods were developed for clinical applications so they score the level of 

tendinopathy. There are two kinds o f such scoring systems: Movin and Bonar systems. 

In each method they score specific variables which evaluate various aspects o f tissue 

quality. Both o f these methods were created for classifying OM images o f longitudinal 

tendon section.

The variables included in the Movin scaling method are: (1) fiber structure, (2) fiber 

arrangement, (3) rounding o f the nuclei, (4) regional variations in cellularity, (5) 

increased vascularity, (6) decreased collagen stainability, and (7) hyalinization. For 

each variable, the score could be 0 (normal tendon) to 3 (the most abnormal 

appearance detectable) (Longo, Franceschi et al. 2008). Therefore the total score of 

each sample could vary between 0 (normal tendon) to 21 (the most severe abnormality 

detectable).

For example (Longo, Franceschi et al. 2008) used Movin scoring method to investigate 

the histological changes o f Supraspinatus tendon in ro ta tor cu ff tears. They classified 

light micrographs o f normal and injured tendons based on Movin scoring scales (Figure 

2-6 to Figure 2-9).

12
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Figure 2-6: Hematoxylin and eosin stain of a 
control supraspinatus tendon in a 71-year-old 
man. Fiber structure, 0; fiber arrangement, 0; 

rounding of the nuclei, 0; regional variations in 
cellularity, 1; increased vascularity, 0; 

decreased collagen stainability, 0; hyalinization, 
0. Total score: 1

Figure 2-7: Hematoxylin and eosin stain of 
supraspinatus tendon harvested from the 

intact middle portion of the tendon between 
the lateral edge of the tendon tear and the 
muscle-tendon junction in a 62-year-old 

woman. Fiber structure, 2; fiber arrangement, 
2; rounding of the nuclei, 3; regional 
variations in cellularity, 2; increased 

vascularity, 0; decreased collagen stainability, 
1; hyalinization, 0. Total score: 10

^ « S t !

m iBi

H m

Figure 2-8: Hematoxylin and eosin stain of 
supraspinatus tendon harvested from the intact 

middle portion of the tendon between the 
lateral edge of the tendon tear and the 

musdetendon junction in a 53-year-old man.
Fiber structure, 2; fiber arrangement, 2; 

rounding of the nuclei, 1; regional variations in 
cellularity, 1; increased vascularity, 1; 

decreased collagen stainability, 2; hyalinization, 
0. Total score: 9

Figure 2-9: Hematoxylin and eosin stain of 
supraspinatus tendon harvested from the 

intact middle portion of the tendon between 
the lateral edge of the tendon tear and the 

muscletendon junction in a 59-year-old man.
Fiber structure, 2; fiber arrangement, 2; 

rounding of the nuclei, 1; regional variations 
in cellularity, 2; increased vascularity, 3; 

decreased collagen stainability, 2; 
hyalinization, O.Total score: 12

13
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The variables included in the Bonar scaling method are: (1) tenocytes; (2) ground

Table 2-2: Semi-quantitative scoring (Bonar scale) (Cook, Feller et al. 2004)

Grade 0 1 2 3

Tenocytes Inconspicuous 

elongated spindle 

shaped nuclei with 

no obvious 

cytoplasm at light 

microscopy

Increased 

roundness: nucleus 

becomes more 

ovoid to round in 

shape without 

conspicuous 

cytoplasm

Increased 

roundness and 

Size; the nucleus is 

round, slightly 

enlarged and a 

small amount of 

cytoplasm is visible

Nucleus is 

round, large 

with abundant 

cytoplasm and 

lacuna 

formation 

(chondroid 

change)

Ground substance

(alcian blue and

colloidaliron

stains)

No stainable 

ground substance

Stainable mucin 

between fibers but 

bundles still 

discrete

Stainable mucin 

between fibers 

with loss of clear 

demarcation of 

bundles

Abundant

mucin

throughout

with

inconspicuous

collagen

staining

Collagen (with and 

without polarized 

light)

Collagen arranged 

in tightly cohesive 

well demarcated 

bundles with a 

smooth dense 

bright

homogeneous 

polarization 

pattern with 

normal crimping

Diminished fiber 

. polarization; 

separation of 

individual fibers 

with maintenance 

of demarcated 

bundles

Bundle changes; 

separation of fibers 

with loss of 

demarcation of 

bundles giving rise 

to expansion of the 

tissue overall and 

clear loss of normal 

polarization 

Pattern

Marked 

separation of 

fibers with 

complete loss 

of architecture

Vascularity Inconspicuous 

blood vessels 

coursing between 

bundles

Occasional cluster 

of capillaries, less 

than 1 per 10 high 

power fields

1-2 clusters of 

capillaries per 10 

high power fields

Greater than 2 

clusters per 10 

high power 

fields

14
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substance; (3) collagen; and (4) vascularity. For each variable the score could be 0 

(normal tendon) to 3 (the most abnormal tendon detectable)(Nicola Maffulli 2008). 

Therefore, the total score o f each sample could vary between 0 (normal tendon) and 12 

(the most severe abnormality detectable) (Table 2-2).

Using either the Movin or Bonar method leads to sim ilar results (Nicola Maffulli 2008). 

By using either of these methods, one is capable of quantifying the appearance of 

normal and tendinopathic tendon.

2.2.3 Quantitative characterization

There are some methods to quantify tissue structural properties. Using image 

processing techniques, one could obtain various measurements in images. For example, 

(Parent G, Langelier et al. 2011) measured space between fibers using Vision assistant 

software, (Version 7.1 National Instrument, Austin, TX, USA). They chose three regions 

of interest (ROIs) for each o f the ir microscopic images (OM) and found the spaces 

between the fibers by contrast dividing the objects into 2 categories: fib r il (black), and 

space (red). Space density was calculated by dividing the number o f red pixels by the 

number o f pixels in the image. They also evaluated the mean area o f the spaces, i.e. 

average of the number of connected red pixels using the same software

They have also calculated fib ril density through transmission electron microscopy 

(TEM) and scanning electron microscopy (SEM) images.by chosing three ROIs in each 

image, and finding the fib ril pixels from background pixels using bottom-hat filtering in 

Matlab (Version 7.5, Mathworks, Natick, USA). F ibril density was calculated by dividing 

the number of fib ril pixels by the total number o f image pixels.

2.3 Tendon mechanical properties

The stress-strain diagram in Figure 2-10 shows the mechanical behavior o f ra t tail 

tendons from a study o f (Amoczky, Lavagnino et al. 2007). Although values are 

specified for ra t ta il tendons, the general trends are the same for all kinds o f tendons. As 

can be seen in this figure, the "physiologic range" includes a toe region and part of 

linear region. In this range, collagen fib rils  begin to un-crimp and then they are

15
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stretched by increasing load. Near the end o f the linear region, isolated collagen fibrils 

begin to fail (Arnoczky, Lavagnino et al. 2007), and stress-strain curve enters to the 

region specified as “overuse injury" region which is the region o f isolated collagen fib ril 

microdamages. In this region, straightening o f collagens is continued and in te rfib rilla r 

sliding and shear between collagen fibrils produces a non-linear load-deformation 

behavior o f the tendon (Arnoczky, Lavagnino et al. 2007). Some collagen fib rils  are 

damaged before others until a complete "tendon rupture" occurs in the last region of 

stress-strain curve (Arnoczky, Lavagnino et al. 2007).

Therefore, collagen fibers properties, the ir crimp structure and their failure level, play a 

significant role in biomechanical behavior o f tendon which are to support and transm it 

tensional load.

Tendon rupture
Stress (M P a) _ Overuse injury

5 - 8%

Physiologic

LinearToe

1 - 3%

0 - 1%

2 6 71 3 5 8 Strain (%)4

Figure 2-10: Stress-strain curve demonstrating the mechanical properties of normal tendon (Arnoczky,
Lavagnino et al. 2007)

A tendon is not a pure elastic material and displays viscoelastic behaviors. I t  has the 

properties of both elastic and viscous material, which means the rate o f loading has an 

effect on tendon behavior. Also, energy is lost during strain-loading, and thus the 

loading and unloading curves w ill not be identical, a phenomenon called "hysteresis".

16
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Two other phenomena originating from viscoelasticity are stress relaxation and creep 

(Margareta Nordin and L. 2001). Stress relaxation is reducing (relaxing) stress under 

constant strain, whereas creep is increasing strain during a constant load. Related 

information w ill be presented in Chapter 3.

Under certain conditions o f loading and tissue quality, tendons also show viscoplastic 

behavior. The tendon is not able to get back to its in itia l length after unloading since it 

undergoes some plastic/permanent deformations. We w ill explain this in further detail 

in Chapter 3.

Up to now, compositional, structural, and mechanical properties o f tendon have been 

introduced since a tendon is a live system which progresses with time, these properties 

can undergo some changes. Some factors which can affect tendon properties are aging, 

diseases, and changes in environmental loading. As mentioned earlier, cells represent 

the active component of tendons, and therefore tendon progression depends on cell 

response to these factors, among which only environmental loading w ill be discussed in 

this thesis. I t  is important to know how cells sense the environmental loading and how 

they respond to it. In the follow ing section, this subject w ill be briefly described.

2.4 Mechanobiology and mechanotransduction

Since many tissue disorders result from mechanical overloading, i t  is very im portant to 

study the relationship between mechanobiological stimulation and tissue progression. 

Mechanobiology discusses these issues. In other words, mechanobiology is the science 

which studies the remodeling o f the tissues in response to physical loading (van der 

Meulen and Huiskes 2002). Tissues are constructed and remodeled by cells. Therefore, 

mechanotransduction is the mechanisms by which loading could be sensed by the cells.

Examples o f mechanotransduction mechanisms are: cell deformation, nucleus 

deformation, cytoskeleton, stretch activated channels, and primary cilium  (Wang 2006). 

Through these mechanisms, mechanical stimulation is converted into biochemical 

signals. Mechanical stimulation, applied to  the ECM can damage i t  I t  can further 

undergo more damages or can be repaired by cellular activity Biochemical signals,

17
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resulted from converting mechanical stimulation through mechanotransduction 

mechanisms, are detected by cells. Cells can respond differently depending on 

stimulation, they can “repair" tissue by producing and maintaining the collagens 

(Devkota, Tsuzaki et al. 2007; Kjaer, Langberg et al. 2009) or cause "degradation" by 

secreting o f collagen degradable enzymes i.e. proteases (Arnoczky, Lavagnino et al. 

2007; Devkota, Tsuzaki et al. 2007; Cousineau-Pelletier and Langelier 2009). Therefore, 

mechanobiology plays a major role in establishing tissue homeostasis.

Mechanobiology and mechanotransduction w ill be discussed in more depth in Chapter 

3.

2.5 Literature review  of characterization methods

Although mechanical properties play an im portant role in tendon functionality 

(Duenwald-Kuehl, Lakes et al. 2012), compositional, and structural properties are also 

of great value in providing complementary information on tissue quality. In fact, 

compositional, structural, and mechanical properties are in a close relation, therefore, 

studying tendon biomechanical and mechanobiological behavior, not only is im portant 

for characterizing mechanical properties, , but it  is also important for characterizing 

compositional and structural properties.

Tissue quality can take different values depending on the properties o f the tissue. For 

example, tissue could be healthy vs. damaged. It should be noted that tissue quality 

affects the cellular response o f the tissue. This w ill be explained in  Chapter 3.

Investigating tissue quality is important to evaluate tissue progression over time. For 

example, to evaluate the efficiency o f a training protocol we need to compare the tissue 

quality before and after the training. Investigating tissue quality is therefore 

unavoidable for further studies of tendon mechanobiology.

In the following section, literature introducing methods which have been used to 

characterize tissue properties w ill be reviewed.. Presented articles are divided into 

three categories corresponding to the type o f experiment conducted: 1) in vitro  w ith  

live cells, 2) in vitro  w ith  dead cells, and 3) in vivo. For each article, a table which

18
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summarizes the tissue quality characterization techniques fo r tissue quality is 

presented. The tissue characterization table is divided into three categories: 

mechanical characterization, structural characterization, and compositional 

characterization. Each category, in turn, is divided into tw o subcategories, In the firs t 

subcategory, the conducted test w ill be explained (e.g. in-line, destructive). In the 

second subcategoiy, the information related to data acquired from the conducted test 

w ill be presented. The hypothesis and results of the article are also explained briefly. At 

the end o f this section, a discussion about these techniques is provided.

Some o f the expressions used to describe mechanical tests which m ight be less fam iliar 

to the reader, are defined here:

•  In-line characterization: the mechanobiological experimentation (to examine the 

impact of a loading regime on tissue progression), and characterization testing 

(to determine tissue quality) are conducted in the same apparatus. Therefore, 

the information about tissue mechanical properties are available at regular time 

intervals during the experiment w ithout changing the tissue from one apparatus 

to another.

• Non-destructive characterization: the characterization does not lead to tissue 

damage or failure. Therefore, other characterization tests could be conducted 

after non-destructive characterization.

2.6 In vitro experimentation on tendons with live cells

Article 1. Distributing a fixed amount of cyclic loading to tendon explants over 

longer periods induces greater cellular and mechanical responses (Devkota, 

Tsuzaki etal. 2007)

Hypothesis/Objective:

1. Magnitude: High-magnitude cyclic loading would cause injury, but not low- 

magnitude cyclic loading.
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II. Duration: For a fixed number o f cyclic loading on tendon, the longer the period 

of loading, the greater the mechanical and cellular responses of tendon.

Table 2-3: Summary of characterization tests conducted in this article

Mechanical characterization Structural Compositional

characterization characterization

Test Measured

variable

None Test Analysis

In-line Dynamic strain8 Destructive Hydroxyproline

Non-destructive Stiffness
content assay 

(determining

Dynamic loading collagen content)

Stress-controlled Sulfated GAGs 

content assay 

(determining 

proteoglycan 

content)

Non-destructive Immunoassay kit 

on media 

(determining 

inflammatory 

mediators, PGE2)

Azocolle 

procedure on 

media

(collagenase

content)

In-line Static strain None

Peak -  trough ,
8 Dynamic strain = -----------------------displacement, throughout loading

trough
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Non-destructive

Creep

Stress-controlled

Off-line9

Destructive

Failure

Strain-controlled

Strain at failure

Energy

density10

None

Results

The loading was conducted on two groups and in four regimens. Figure 2-12 shows the 

schematic o f the loading regimens.

• Dynamic and static strain accumulations were larger in "High- 

magnitude/Long-loading" compared to "High-magnitude/Short-loading" 

groups.

•  Static strain accumulation was greater in "Low-magnitude/Long-loading" 

compared to "Low-magnitude/Short-loading” groups. These results show the 

effect o f loading time on the tissue response.

9 Failure test was performed on dead tissues, since the tissues were first frozen (at -9"C) and then thawed.
10 The amount of energy tendons absorb before failing.
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Characterization tests

Mechanical characterization Compositional characterization

2 groups, 4  regimens of loading

High: 12.0 -1 .0  MPa

Short Load (Day 0)

Low: 3.0 -  1.0 MPa

Continuous 24hrs

Long Load (Day 0 - 1 1 )

High: 12.0 -1 .0  MPa

2 hrs/day, 12 days

Low: 3.0 -1 .0  MPa

Figure 2-12: Schematic of the loading and assaying of the tendon

• However fo r dynamic strain, there was no difference between "Low- 

magnitude/Long-loading" and "Low-magnitude/Short-loading" groups. Taking 

into account this result, along w ith  the result from static strain, suggests that 

time is not the only factor affecting tissue response. As it is observed from 

mechanical and compositional analyses, loading magnitude also plays an 

important role in tissue response.

•  The results from failure test did not show a definite effect of cellular response on 

tendon properties. The properties were either tim e dependent or load- 

magnitude dependent but not both. The "High-magnitude/Long-loading" did not 

consistently produce the most in ferio r results expected. The authors suggest the 

effect o f the difference o f cross-sectional areas o f tendons as the reason o f these 

uncertain failure results.
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Article 2. Biomechanical response of collagen fascicles to restressing after 

stress deprivation during culture. (Yamamoto, Kogawa et al. 2007)

Hypothesis/O bjective:

Restressing w ill improve the decreased properties o f fascicles resulting from stress 

shielding.

Table 2-4: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructura l characteriza tion11 C om positional
characteriza tion

Test Measured
variab le

Test Analysis None

Off-line

Destructive

Failure

Strain

controlled

Tangent Modulus 

Tensile strength 

Strain at failure

Destructive 

Microscopy (OM)

Qualification

Quantification 

(crimp angle, 

crimp length, 

wavelength)

Result:

• The decrease o f mechanical properties, represented by tangent modulus and 

tensile strength, was stopped and, in most cases reversed by applying stress 

after stress deprivation but none o f them improved to their normal level.

• Structural characterization results were also consistent w ith  mechanical 

characterization results. The crimp morphology o f fascicles was not recovered to 

original levels, after restressing.

11 Samples were separated for mechanical and structural characterization.
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Article 3. Relative contribution of mechanical degradation, enzymatic 

degradation, and repair of the extracellular matrix on the response of 

tendons when subjected to under- and over- mechanical stimulations in 

vitro. (Cousineau-Pelletier and Langelier 2009)

Hypothesis/Objective:

Investigating the contribution of the three sub-processes o f tendon response (Repair, 

Mechanical degradation, and Enzymatic degradation) when subjected to cyclic 

mechanical loading.

Tendon mechanobiological response (TMR) could be approximated as:

T M R = R - M D -  ED; where

R: Repair, MD: Mechanical degradation, ED: Enzymatic degradation.

Table 2-5: Summary of characterization tests conducted in this article

Mechanical characterization Structural

characterization

Compositional

characterization

Test Measured

variable

Test Analysis None

In-line

Non-destructive 

Cyclic loading 

Strain controlled

Peak to peak 

stress

Destructive

Microscopy (OM, 

TEM12)

Qualification

Quantificatio 

n (fibril 

density)

12 Transmission electron microscopy
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Result:

• In the absence of R and ED, i.e. when TMR is represented by -MD: the results 

from mechanical characterization, showed a fast decrease in peak stresses 

during experimentation time w ithout any increase indicating tendon damage. 

Structural analyses supported mechanical data since they showed loosely 

packed and wavy collagen structure.

• In the absence o f ED, i.e. when TMR is represented by R-MD, the results from 

mechanical characterization showed an overall increase in peak stresses during 

experimentation time indicating tendon improvement. Structural analyses are in 

well correspondence to mechanical results, since they show dense and well- 

oriented collagen structure.

•  In the presence of all three sub-processes, i.e. when TMR is represented by R- 

MD-ED, the results from mechanical characterization showed a decrease o f peak 

stresses after the in itia l increase. Structural analyses were consistent w ith  these 

results since they showed disorganized collagen structure.
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Article 4. Effect of Preconditioning and Stress Relaxation on Local Collagen 

Fiber Re-Alignment- Inhomogeneous Properties o f Rat Supraspinatus 

Tendon13. (Miller KS 2012)

Hypothesis/Objective:

I. The greatest fiber re-alignment w ill occur in the toe-region at ramp-to-failure 

test but some fiber re-alignment w ill also occur during preconditioning.

II. Disorganization in collagen fiber w ill occur during stress-relaxation test.

III. Mechanical properties and in itia l collagen fiber alignment are greater at

midsubstance o f tendon than tendon-to-bone insertion site.

Table 2-6: Summary of characterization tests conducted in this article

Mechanical characterization Structural characterisation Compositional

characterization

Test Measured variable Test Analysis None

In-line

Non-destructive

Preconditioning

Force-

controlled

Grip to grip strain Non-destructive

OM with polarized 

light

Quantification 

(changes in 

collagen fiber 

re-alignment)

In-line

Non-destructive

Stress

relaxation

Strain-

controlled

Force

13 There is no certain reference in the article whether they worked on live or dead tissues.
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In-line

Both destructive 

and non

destructive

Ramp-to-Failure

Strain-

controlled

Stiffness 

Strain at failure 

Stress

Result:

• The greatest fiber re-alignment occurred during preconditioning and then at toe- 

and linear regions o f the ramp-to-failure tes t

•  No collagen fiber re-alignment observed during stress-relaxation test.

•  Lower moduli, more disorganizations and higher strains at insertion site than 

tendon midsubstance indicate that mechanics and structure o f the tissue differ at 

different tissue locations, i.e. the tissue is not homogeneous.
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2.7 In vitro experimentation on tendons w ith  dead cells

In this type o f experiments, i.e. tendon w ith  dead cells, the biomechanical behavior of 

tendon is related to ECM since the ECM remodeling by the cells is avoided here.

Article 1. Low Stress Tendon Fatigue is a Relatively Rapid Process in the Context 

of Overuse Injuries. (Parent G, Langelier et al. 2011)

Hypothesis/Objective:

I. Damage progression o f tendons, even w ith  low  stress, is a rapid process.

II. Compliance amplitude increases w ith  increasing injury.

III. Damage progression affects collagen network.

Table 2-7: Summary of characterization tests conducted in this article

Mechanical characterization Structural characterization Compositional

characterization

Test Measured

variable

Test Analysis None

In-line

Non-destructive

Cycling

Stress controlled

Dynamic

compliance

Mean Strain

Destructive

Microscopy (OM, 

TEM, SEM14)

Qualification

Quantification 

(Fiber density)

14 Scanning electron microscopy
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Result:

•  Strain increased w ith  increasing levels of fatigue.

•  Compliance decreased at the beginning. Thereafter, i t  increased w ith  increasing 

fatigue levels.

• Structural characterization also showed disorganization o f the collagen 

structure, another evidence o f mechanical degradation.

• These results support the hypothesis that mechanical degradation o f tendon is a 

very fast process even at low  stresses.

29



www.manaraa.com

Article 2. Sub rupture Tendon Fatigue Damage. (Fung, Wang et al. 2009) 

Hypothesis/O bjective:

Characterizing the changes in the mechanical and micro-structural properties o f tendon 

at controlled fatigue levels.

Table 2-8: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructu ra l

characteriza tion

C om positional

cha racteriza tion

Test Measured

variab le

Test Analysis None

In-line

Destructive

Cycling

Stress controlled

Calmp-to-clamp

strain

Stiffness

Hysteresis

Destructive

Microscopy (OM,

confocal

microscopy)

Qualification

Quantification 

(damage area 

fraction15)

Result:

•  Strain increased significantly w ith  increasing levels o f fatigue even at lower 

fatigue levels. Therefore, clamp-to-clamp strain is an appropriate indicator o f 

damage from early to late fatigue.

•  Changes in stiffness and hysteresis were significant only at higher levels of 

fatigue.

•  Structural analyses also showed disorganization in collagen structure w ith  

increasing fatigue levels.

15 number of the pixels with tissue deformity as a percentage of number of pixels of total area
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• Therefore both mechanical and m icrostructural characterization showed 

degradation in tendon properties through fatigue levels which are a result of 

accumulation o f micro-damages.
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Article 3. Corticosteroid administration alters the mechanical properties of 

isolated collagen fascicles in rat tail tendon. (Haraldsson, Aagaard et al.

2009)

Hypo thesis/O bjective:

Injecting corticosteroid reduces biomechanical properties o f collagen fascicles.

Table 2-9: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructu ra l

characteriza tion

C om positional

characteriza tion

Test Measured

variab le

None None

In-line Yield stress

Destructive Peak stress

Failure Stiffness

Strain controlled Strain at failure

Result:

•  The mechanical characteristics o f corticosteroid-treated tendons decreased 

since the results showed lower yield stress, peak stress, and stiffness, in treated 

tendons compared to control group.

• The strain at failure remained constant between these groups.
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2.8 In vivo experimentation

Article 1. Early response to tendon fatigue damage accumulation in a novel in 

vivo model. (Fung, Wang et al. 2010)

Hypothesis/Ob j ective:

A fatigue-damaged tendon response differs from a lacerated tendon healing response.

Table 2-10: Summary of characterization tests conducted in this article

Mechanical characterization Structural

characterization

Compositional

characterization

Test Measured

variable

Test Analysis Test Analysis

In-line

Non-destructive

Cycling

Force controlled

Peak cyclic 

strain

Stiffness

Hysteresis

Destructive

Microscopy

(confocal

microscopy)

Qualification Destructive Reverse 

transcription 

PCR (Collagen I, 

III, V mRNA 

expression)

Result:

• Mechanical characterization results demonstrated that stra in increased w ith  

increasing tissue fatigue levels. This is consistent w ith  expected changes o f strain 

in damaged tendon from other studies and also w ith  structural characterization 

results from this article (Figure 2-13).
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Figure 2-13: The changes of strain and stiffness during different levels of fatigue loading. As it can be 
viewed in the figure, strain always has an increasing pattern [at low, moderate and high fatigue levels), 
while stiffness increases at low level, remains almost constant at moderate level, and decreases at high

level of fatigue (Fung, Wang et al. 2009)

•  On the other hand, changes in stiffness and hysteresis do not fo llow  a monotonic 

pattern (Figure 2-13 and Figure 2-14)

•  Stiffness increased and hysteresis decreased at low and moderate fatigue levels.

• Only at high-level fatigue, changes in stiffness and hysteresis were consistent to 

damaged tendon properties. (Figure 2-13 and Figure 2-14)
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Figure 2-14: changes in stiffness and hysteresis do not show a monotonic manner. Only at high- 
fatigue level their changes are consistent to expected changes in damaged tendon (Fung, Wang et

al. 2009).

Structural characterization and compositional characterization revealed the 

degradation in tendon:

> Microscopy images showed collagen structure damage and disorganization 

increasing w ith  increasing damage.

>  Collagen I, III, V mRNA expressions altered at all fatigue levels.

•  Results are inconsistent w ith  healing response of the lacerated tendon.
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Article 2. Coordinate regulation oflL-1 0 arid MMP-13 in rat tendons following 

subrupture fatigue damage. (Sun, Li et al. 2008)

Hypothesis/O bjective:

Overloaded tendon induces a tendinopathy and alters gene expressions in a load- 

dependent manner.

Table 2-11: Summary of characterization tests conducted in this article

Mechanical characteriza tion S tructu ra l

characteriza tion

Com positional

characteriza tion

Test Measured

variab le

Test Analysis Test Analysis

In-line

Non-destructive

Cycling

Force controlled

Peak to peak 

strain

Destructive

Microscopy

(confocal

microscopy)

Qualification Destructive Reverse 

transcription 

PCR (mRNA 

analysis of MMP- 

13, and IL-10)

Western blot 

(protein analysis 

of MMP-13, and 

IL-1 0}

Result:

•  The results demonstrated that tendon structural damage and changes in gene 

expression o f MMP-13, and IL-1 0 are distinctly different between low- and 

moderate- level fatigue loadings.
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Article 3. Exposure dependent increases in IL-10, Substance P, CTGF and 

tendinosis in flexor digitorum tendons with upper extremity repetitive strain 

injury. (Fedorczyk, Barr et ai. 2010)

Hypothesis/Objective:

I. Tendons undergo inflammation earlier than other degenerative changes, when it 

is subjected to high repetitive high force (HRHF) tasks.

II. Both responses o f tendons, i.e. inflammation and degenerative changes, are 

exposure-dependent, i.e. the longer the HRHF task and the higher demand tasks, 

the greater tissue response.

III. Inflammatory and neurochemical changes in tendons are related to declines in 

grip strength.

Table 2-12: Summary of characterization tests conducted in this article

Mechanical

characterization

Structural

characterization

Compositional

characterization

Test Measured

variable

Test Analysis Test Analysis

In-line

Non-
>

destructive

Cycling

Force-

controlled

Grip strength 

(MPF16)

Destructive

Microscopy

(OM)

Qualification

Semi-

Quantification 

(modified 

Bonar scale 

method)

Destructive ELISA (measuring IL- 

10)

Immunohistochemistry

Quantification (changes 

in IL-1 0, and substance 

P)

16 Maximum pulling force
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Result:

•  Mechanical characteristic o f tendon, represented by grip strength, underwent an 

early decrease.

•  At the same time as change in grip strength, there was an increase in substance 

P, and IL-1 E cells.

•  There was a later increase in macrophages, neutrophils, connective tissue 

growth factor (CTGF), and periostin like factor (PLF) fibroblasts.

• Structural changes occurred at the time o f increasing macrophages, neutrophils, 

CTGF, and PLF fibroblasts.

•  It is suggested that the early increase o f 1L-1S, which plays a role in in itia ting 

fibroblast proliferation and degenerative tendon changes, caused later 

degenerative changes.

2.9 Summary and concluding rem arks

There are several techniques to characterize tissue quality. Among these techniques, 

some are destructive and others are non-destructive. Structural and compositional 

characterizations are usually referred to as destructive (e.g. OM, TEM, analysis of tissue 

protein content) although there are also some non-destructive techniques (e.g. culture 

media analysis). For mechanical characterization, there are also destructive tests (e.g. 

failure test) and non-destructive tests (e.g. low amplitude stress relaxation or creep 

tests).

All these characterization tests provide the complementary information to better 

understand tissue quality since compositional, structural and mechanical properties are 

interrelated. In fact, by perform ing more o f these characterization tests, more aspects of 

tissue quality w ill be clarified.

In our view, in-line non-destructive tests should be prioritized over other mechanical 

characterization methods. In-line tests enable the monitoring of tissue progression
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during experiments. Therefore, for experiments investigating tissue properties at 

regular time intervals, information at each time point could be extracted from the same 

sample, and there is no need to replicate the experiment at each time point using 

different samples. Moreover, since the stimulation and characterization are performed 

in the same apparatus, the risk of contamination, damage, and also the risk of reference 

loss (e.g. loss o f in itia l tissue length) resulted from  transferring the sample from one 

apparatus to another is eliminated (Mathieu Viens, Guillaume Chauvette et al. 2011).

Non-destructive tests during the experiments provide the opportunity to apply other 

compositional and structural analysis or failure test at the end of the experiment since 

the tissue is not damaged. Therefore, complementary information can be obtained. In 

addition, in non-destructive tests samples can be self-compared, thus, data accuracy is 

increased. Moreover, the number o f samples and animals is decreased. However, i t  is 

worth noting that very few studies perform non-destructive tests, as destructive tests 

can provide some information which could not be achieved in  non-destructive tests like 

load-to-failure and strain-at-failure.

Although in-line non-destructive tests can be beneficial to gather information, on all 

aspects of tissue quality, there are still concerns about whether these tests w ill affect or 

not the experimental results. In fact, even i f  they are conducted using physiological 

parameters, they could affect tissue mechanobiological response. Up un til now, this 

domain has been poorly investigated. In fact, we d id not find studies performed on this 

topic.

One factor which could have an effect on experimental results is using diagnostic tests 

instead o f stimulation protocols to provide information fo r evaluating tissue properties. 

We investigated this factor in this Master's pro ject Using diagnostic tests has the 

advantage o f defining a "reference standard" to evaluate tissue properties in all 

experiments. Therefore, the data between different experiments could be compared 

more reliably. But as mentioned, there is a concern that behavior o f the tissue could be 

affected by diagnostic tests. In Chapter 4, we demonstrate that the diagnostic test
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conducted to observe tissue quality at regular time intervals has an effect on tissue 

progression over time.

This arises from viscoelasticity and viscoplasticity behaviors of tissue. In chapter 3 

(review article) this subject w ill be discussed w ith  a in-depth look into it.
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3. Viscoelasticity and viscoplasticity o f fibrous load-bearing  

tissues influence tissue mechanobiological response

3.1 Avant-propos

Auteurs: Leila Jafari et Eve Langelier

A ffilia tio n : PERSEUS Research Group, Mechanical Engineering Department, Universite 

de Sherbrooke, Sherbrooke, Quebec, Canada

Date de soumission: 4 April 2012

Revue: Connective Tissue Research

T itre  en fra n ca is : La viscoplasticite et la viscoelasticite des tissus supportant des 

chargements influencent la reponse mecanobiologique tissulaire

Resume fra n ca is :

Meme si les blessures affectant les tissus fibreux supportant des chargements, comme 

les tendons, ligaments, capsules et fascias, sont frequentes, il n'y a actuellement aucun 

traitement qui resulte en une guerison optimale de ces tissus. La mecanobiologie, ce 

domaine de recherche qui examine la reponse des tissus vivants aux stimuli 

mecaniques, serait la cause de plusieurs de ces blessures et pourra it contribuer 

significativement au developpement de strategies pour une prevention et une guerison 

optimales. Toutefois, la litterature ne comporte pas encore de description de la fa^on 

dont la reponse des tissus aux stimuli biophysiques est affectee par la viscoelasticite et 

la viscoplasticite, deux comportements cles des tissus fibreux supportant des charges. 

Le principal objectif de cette revue est d'expliquer ces comportements, ainsi que leurs 

effets sur la reponse des tissus aux stimuli mecaniques, puisque ces concepts doivent 

etre compris et consideres par les chercheurs dans leur quete vers des traitements 

optimaux bases sur la mecanobiologie. Dans cet article, nous faisons une revue des 

connaissances et des hypotheses actuelles expliquant 1’origine de la viscoelasticite et de 

la viscoplasticite dans les tissus fibreux supportant des chargements. Nous decrivons la

41



www.manaraa.com

dynamique competitive entre la reparation, la degradation enzymatique et la 

degradation mecanique, qui dependent de la qualite du tissu, de meme que de la 

viscoelasticite et la viscoplasticite. Finalement, nous presentons differents parametres 

de stimulation qui influencent la reponse des tissus vivants supportant des 

chargements aux stim uli mecaniques a cause de leur viscoelasticite et de leur 

viscoplasticite. Cette analyse pourra it avoir des implications significatives pour les 

etudes in vitro en bioreacteur sur la pathophysiologie et le genie tissulaire fonctionnel, 

de meme que pour les applications cliniques in vivo.
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3.2 Abstract

Although injuries occur frequently in fibrous load-bearing tissues, such as tendons, 

ligaments, capsules and fasciae, there are currently no treatments that result in optimal 

healing. Mechanobiology, the field o f research into the response of live tissues to 

biophysical stimuli, lies behind many o f these injuries and may potentia lly provide a 

significant contribution to the development o f optimal prevention and healing 

strategies. However, the literature does not yet contain descriptions o f how tissue 

response to biophysical stimuli is affected by viscoelasticity and viscoplasticity, two key 

behaviors of fibrous load-bearing tissues. The main objective of this review is to explain 

these behaviours, as well as the ir effects on tissue response to  mechanical stimuli, since 

these concepts must be understood and accounted for by researchers in the ir quest for 

optimal treatments based on mechanobiology. In this paper, we review the current 

knowledge and hypothesis behind the origins o f viscoelasticity and viscoplasticity in 

fibrous load-bearing tissues. We describe the dynamic competition between repair, 

enzymatic degradation and mechanical degradation o f the extracellular matrix, which 

depends on tissue quality, as well as tissue viscoelasticity and viscoplasticity. Finally, 

we present different stimulation parameters influencing the response o f live fibrous 

load-bearing tissues to biophysical stim uli because of viscoelasticity and viscoplasticity. 

This analysis may prove to have significant implications fo r bioreactor studies involving 

pathophysiology and functional tissue engineering, as well as fo r in vivo clinical 

applications.

Key words: Tendon, Ligament, Extra-cellular matrix. Stress relaxation, Creep, 

Mechanotransduction, Biophysical stimuli, Repair, Mechanical degradation, Enzymatic 

degradation, Tissue adaptation, Bioreactor, Rehabilitation, Tissue engineering
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3.3 Introduction

Lesions to fibrous load-bearing tissues (FLBT), such as tendons, ligaments, capsules or 

fasciae, occur frequently in sports and occupational activities. Despite a high incidence 

of lesions, there are as yet no optimal treatments. Therefore, promoting native tissue 

healing, optim izing rehabilitation procedures and improving engineered tissues all 

constitute significant issues. To this end, researchers currently harbour high 

expectations o f strategies based on mechanobiology.

Mechanobiology is the field emerging from mechanics and biology in studying how live 

tissues are produced, maintained and adapted by cells in  response to biophysical 

stimuli (van der Meulen and Huiskes 2002). Mechanotransduction is at the heart of 

mechanobiology; it  is the process of converting biophysical stimuli into biochemical 

signals at the cellular level (Wang 2006). I t  enables cells to "sense" applied biophysical 

stimuli (Wang 2006).

The response o f FLBT to biophysical stim uli is governed, in part, by tissue 

viscoelasticity and viscoplasticity. Because o f these tw o macro-mechanical behaviours, 

the type of stimulus (strain- or stress-controlled stimulus), the stimulus history and the 

use of recurring non-destructive mechanical tests for tissue quality characterization can 

influence tissue response. Thus, when dealing w ith  FLBT response to biophysical 

stimuli, researchers cannot overemphasize the importance o f considering tissue's 

viscoelasticity and viscoplasticity. They must understand and consider these macro

mechanical behaviours when selecting the most optimal stimulus and designing 

exercise-based treatment strategies.

The goal o f this review is to introduce the inter-disciplinary community o f researchers 

interested in FLBT mechanobiology (biologists, engineers, orthopaedists, etc.) to the 

impacts of viscoplasticity and viscoelasticity on tissue response to biophysical stimuli. 

First, we propose to brie fly summarize the composition and structure o f FLBT and then 

to review the current knowledge and assumptions explaining the origin of 

viscoelasticity and viscoplasticity in FLBT. Using a block diagram representation, we 

w ill deconstruct the live tissue response to biophysical stim uli into the components of
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extracellular matrix (ECM) response and live cell response. This w ill lead to an 

explanation o f the dynamic competition between the repair and degradation 

(mechanical and enzymatic) o f the ECM, which in turn  depends on tissue quality, 

viscoelasticity and viscoplasticity. Finally, we w ill discuss the influence o f the 

aforementioned tissue mechanical behaviours on in vitro  bioreactor studies and in vivo 

clinical applications. The explanations contained herein are based on the scientific 

literature.

Please note that this paper is aimed at an inter-disciplinary community o f researchers. 

Therefore, a number o f technical words or expressions used throughout this paper are 

defined in the Appendix to facilitate comprehension by readers from  all research and 

practice backgrounds.

3.4 The composition and structure of FLBT

Throughout this paper, FLBT w ill be regarded as involving two main components: 1) an 

inert component made up o f the ECM and 2) an active component constituted by the 

cells. FLBT are relatively hypocellular, as cells occupy only approximately 20% o f the 

volume o f tissue in tendons and ligaments (Nordin and Frankel 2001);(0atis 2009). 

Therefore, i t  is reasonable to assume that the ECM provides the tissue's macro

mechanical behaviour.

The ECM contains approximately 60%-80% water and 20%-40% solids (Nordin and 

Frankel 2001) but these quantities vary w ith  species (Vogel 1991), anatomical site 

(Amiel, Frank et al. 1984; Nordin and Frankel 2001; Keyoung Jin Chun 2003; Wang 

2006), tissue types (Amiel, Frank et al. 1984) and age (Elliott 1965; Kleiner 1998; 

Nordin and Frankel 2001), in ter alia. The ECM is a biopolymer, i.e. an interlaced 

network composed o f three main categories of molecules: collagen, elastin and ground 

substance. (Please note that describing these molecules goes beyond the scope o f this 

review. To that end, the reader may refer to the many available books and review 

articles.) The interactions among molecules of the same type, molecules o f different 

types, as well as the ir interactions w ith  water, dictate FLBT macro-mechanical 

behaviour.
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3.5 Viscoelasticity and viscoplasticity of FLBT: O rigin and

manifestations

In order to study FLBT mechanobiological response, tissues are subjected to 

macroscopic biophysical stimuli. Under these biophysical stimuli, FLBT exhibit 

viscoelasticity or viscoplasticity. This section explains how the composition and 

structure o f FLBT are at the heart o f viscoelasticity and viscoplasticity. The 

manifestations of these macro-mechanical behaviours are also examined here.

3.5.1 Knowledge and assum ptions behind the o rig in  o f  FLBT m acro-m echanical 

behaviour

Given the combination o f biopolymers and water described above, the ECM in FLBT 

shows time-dependent (viscous) macro-mechanical behaviour w ith reversible (elastic) 

or non-reversible (plastic) deformation under biophysical stimuli, depending on the 

situation. Explanations proposed for these important behaviours are as follows:

V iscosity in the ECM could originate in part from the proposed mechanism o f frictional 

losses related to flu id flow  through the ECM (Sander and Nauman 2003). Another 

possible mechanism is frictional losses associated w ith  the relative motion o f ECM 

collagen structures as they pass by each other (Sander and Nauman 2003; Screen 

2008). Because o f viscosity, ECM mechanical behaviour is time-dependent, meaning 

that it  is affected by loading rate and loading history. In FLBT, viscosity is combined 

w ith  elasticity or plasticity:

E lastic ity o f the ECM could arise mainly from  reversible extension o f collagen units. 

First, at very low  levels o f loading, collagen fibres lose the ir waviness through the 

processes o f straightening or uncrimping (V iid ik 1972; Hansen, Weiss et al. 2002). 

Then, w ith  increased loads, collagen helices (tropocollagens) begin to stretch (M osier, 

Folkhard et al. 1985). Sliding o f collagen units past each other is another mechanism 

explaining FLBT extension (Screen HR 2004). Since the uncrimping o f collagen fibres 

and the stretching o f helices are reversible processes Q6zsa LG 1997), and since the
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sliding o f collagen units can be completely reversible under certain conditions [Screen 

HR 2004), the tissue shows viscoelastic behaviour.

P lastic ity  o f the ECM occurs at higher levels of loading, fo r example, during a rupture 

test in vitro  (Screen HR 2004; Oatis 2009)and w ith  in vivo trauma (Nordin and Frankel 

2001; Magee, Zachazewski et al. 2007). It also occurs after a higher number o f lower 

loading repetitions, for example during an in v itro  fatigue test (Wang, Ker et al. 1995; 

Wren, Lindsey et al. 2003; Thornton GM 2007; Fung, Wang et al. 2009; Fung, Wang et al. 

2010; Parent G 2011), in vivo stretching (Kisner C 2007), and possibly during the 

development o f overuse injuries (Magee, Zachazewski et al. 2007; Woo SL-Y 2007). This 

phenomenon could be explained through a non-reversible process o f sliding between 

collagen units (Knorzer E 1986), a decrease in the amount o f intramolecular bonds or 

through micro-damage to the ECM (Fung, Wang et al. 2009; Parent G 2011). The FLBT 

are then said to be viscoplastic.

Viscoelasticity and viscoplasticity both depend on variables relating to ECM quality, 

such as hierarchical structure, water content, noncollagenous ECM component content, 

and enzymatic and nonenzymatic cross-linking:

H ierarch ica l s tructu re : A study by Gupta et al. (Gupta, Seto et al. 2010)showed that 

changes in tendon viscoelastic behaviour correlates w ith  structural changes at the fibre 

and fib ril levels.

W ater content: Studies observed that tissue strength reduces w ith  an increased 

hydration in tendon fascicles (Screen, Shelton et al. 2005; Screen, Chhaya et al. 

2006)and that creep (time-dependent strain under stress; Figure 3-1) decreases w ith  a 

decreased hydration in ligaments (Thornton, Shrive et al. 2001).

Noncollagenous ECM com ponent content: Using decorin knockout mice, larger and 

faster stress relaxations (time-dependent stress under strain; figure 3-1) were 

observed in the absence o f decorin (Elliott, Robinson et al. 2003). Moreover, tendon 

fascicles from which glycosaminoglycans were removed using the enzyme
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chondroitinase ABC exhibited an increased maximum modulus, compared w ith  freshly 

extracted fascicles (Screen, Chhaya et al. 2006).

Cross-linking: It is recognized that collagen cross-linking prevents molecule sliding 

and increases tissue stiffness (DeGroot 2004; Avery and Bailey 2005).

Finally, it  is w orth  noting that, over a lifetime, changes in the viscoelasticity and 

viscoplasticity of FLBT occur, depending on various life stages or events, such as 

maturation (Lam, Frank et al. 1993), ageing (Nielsen, Skalicky et al. 1998), in ju ry  

(Dourte, Perry et al. 2010), healing (Frank, Hart et al. 1999; Abramowitch, Woo et al. 

2004) or immobilization (Eliasson, Fahlgren et al. 2007), all o f which affect the ECM 

quality (Jozsa LG 1997).

Dynamic biophysical stimuliStatic biophysical stimuli 
Strain-controlled Stress-controlled Strain-controlled Stress-controlled

o .

8- °O -r; Dynamic
creep

;; Dynamic 
stress

/ \  • ■ re laxationStress
relaxation

Creep

Figure 3-1: Comparison of the manifestations of linear elasticity of materials and 
viscoelasticity/viscoplasticity of FLBT under static and dynamic stimuli, e is strain; tris stress; t  is time

and At is time delay
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3.5.2 Manifestations of viscoelasticity and viscoplasticity for ECM under 

biophysical stimuli

In order to appreciate the impact o f the ECM's macro-mechanical behaviour on the 

mechanobiological response o f live tissues, we must firs t highlight the differences 

between the manifestations o f elasticity, viscoelasticity and viscoplasticity of inert 

materials (tissues w ithout live cells) when they are submitted to strain- or stress- 

controlled biophysical stimuli.

Materials react d ifferently to loading, depending on the ir macro-mechanical behaviour, 

as shown in Figure 3-1. A linear elastic material follows Hook's law: <y= Ee, where cris 

stress, E is Young's modulus and e is strain. Thus, the ra tio  a/e is constant over time 

w ith both static and dynamic stimuli (Figure 3-1, 1: la  vs lb ;  2a vs 2b; 3a vs 3b; 4a vs 

4b).

A viscoelastic material shows a time-dependent reaction to  load. As a consequence, 

when subjected to constant strain input, the resulting output is stress relaxation (e = 

f(o,t)) (Figure 3-1: la  vs lc )  and when subjected to constant stress the output is creep 

(a=f(e,t)) (Figure 3-1: 2a vs 2c). In vivo, stress relaxation and creep can be experienced 

during static stretching. Stress relaxation occurs for example when one keeps a 

stretching position constant and feels the stretching sensation decreasing w ith  time. 

Creep occurs when a stretching force is maintained constant by adjusting one's position 

over time.

When subjected to dynamic stimuli, the ECM of FLBT shows a tim e delay between 

stimulation and response (Figure 3-1: 3a vs 3c; 4a vs 4c). Moreover, because o f time- 

dependence, the output resulting from  dynamic strain input is dynamic stress 

relaxation (Figure 3-1: 3a vs 3c) and the output from dynamic stress input is dynamic 

creep (Figure 3-1: 4a vs 4c).

Dynamic stress relaxation (Figure 3-1: 3c) and dynamic creep (Figure 3-1: 4c) can be 

explained by incomplete recovery o f the tissue's mechanical properties between two
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successive loading cycles. Incomplete recovery, in turn, can be explained by two 

mechanisms:

1) The viscous phenomena have different time constants during tissue loading and 

unloading phases. For example, in figure 3-2, tissue lengthening is driven by the 

apparatus during the loading phase o f a strain-controlled stimulus. However, 

during the unloading phase, tissue shortening is driven by the tissue itself. This 

may require more time than allowed by the stimulation protocol.

2) During loading, the tissue’s quality changes (tem porarily or permanently) as 

water is exuded, collagen fib rils  slide against each other, the collagen structure is 

damaged, proteoglycans are lost, etc. These changes in tissue quality im ply that 

changes (temporary or permanent) occur in mechanical properties and in  the 

time constant fo r viscous phenomena.

I Anchors
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re c o v e ry
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Figure 3-2: Dynamic stress relaxation during a strain-controlled dynamic test Incomplete recovery of 
tissue length and mechanical properties at the end of the unloading phase leads to reduced peak stress at 

the end of the next loading phase. (Please note that changes were emphasized in the figure to facilitate 
conceptualization. However, in reality, changes may be more subtle, as they may occur microscopically,

such as in molecular rearrangement).

52



www.manaraa.com

Alternating s tim u li/rest periods also highlight a difference between the behaviours of 

elastic materials and viscoelastic/viscoplastic FLBT (Figure 3-3). For example, periods 

of dynamic loading under strain control can be alternated with rest periods. In FBLT, 

stress level decreases during stimulation periods and recovers during rest periods 

(Figure 3-3a). However, i f  the rest periods are too short (Solomonow, He Zhou et al. 

2000; Solomonow 2004)(Figure 3-3b-c) or i f  plasticity has occurred in the ECM, stress 

recovery may be hindered.

Finally, i t  is worth noting that both static and dynamic creep can lead to rupture if  

maintained over a long enough period (Wang and Ker 1995; Wang, Ker et al. 1995; 

Wren, Lindsey et al. 2003; Thornton GM 2007; Fung, Wang et al. 2009; Parent G 2011). 

Dynamic creep apparently increases faster than static creep (Thornton, Shrive et al. 

2001).

a) rest rest 
•--------------H

A

b) IlftaH

--------- I H t m i ----------------  * « « M 1---->
t

i «

c) * llM
t

g © <D

Figure 3-3: Impact of rest periods on the manifestation of material viscoelasticity/viscoplasticity under 
strain-controlled dynamic stimuli. When rest periods are too short (b and c), the overall stress level 

experienced by the ECM decreases, a  is stress and t is time. Double-headed arrows indicate rest periods. 
(Adapted from Viens et al. (2011) ASME Journal o f Medical Device with permission).
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3.6 Live FLBT response to biophysical stim uli

The global response o f live FLBT to biophysical stim uli is complex. To facilitate 

understanding, the follow ing sections deconstruct the tissue response into the separate 

components o f ECM micro-mechanical and cellular responses, and then bring them 

back together in order to address the global tissue response.

3.6.1 ECM response under biophysical stimuli

Under macroscopic biophysical stimuli, the molecules that make up the ine rt ECM are 

subjected to stress and strain and could thus undergo mechanical degradation (MD), as 

would many conventional polymers under sim ilar mechanical loading conditions (Ward 

1983) (Figure 3-4 in blue). One example o f MD is mechanical fatigue, which affects 

tissue quality X over time (and thus implies a time rate of change of tissue quality X md) 

when the ECM is submitted to dynamic biophysical stimuli. LBFT fatigue can occur due 

to repetitive activities at w ork or in sports. Another example of MD is partial or 

complete rupture o f the ECM when it  is subjected to excessive stress, such as in trauma. 

ECM plasticity is a manifestation o f MD due to m icrostructural changes in the ECM and 

its components (Fung, Wang et al. 2009; Parent G 2011).

Research on the MD process affecting the ECM under stress-controlled dynamic stim uli 

has generally shown that the ECM strain adopts a triphasic shape over tim e since strain 

always increases but at different rates over time (Wang, Ker et al. 1995; Wren, Lindsey 

et al. 2003; Thornton GM 2007; Fung, Wang et al. 2009; Fung, Wang et al. 2010; Parent 

G 2011) (Figure 3-5 a). Compliance (the inverse o f stiffness) changes in a U-shaped 

curve over time (Parent G 2011), meaning that compliance firs t decreases and later 

increases over time (Figure 3-5 b). Depending on the study, stiffness either decreases 

over time (Wang, Ker et al. 1995; Wren, Lindsey et al. 2003), or changes in an inverse-U 

curve (Fung, Wang et al. 2009; Fung, Wang et al. 2010) meaning that stiffness firs t 

increases and later decreases over time (Figure 3-5 b). This corresponds to the 

compliance observations. Both the time rate o f change of strain (Wang, Ker et al. 1995;
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Wren, Lindsey et al. 2003; Fung, Wang et al. 2009; Fung, Wang et al. 2010; Parent G 

2011) and

Tissue quality (ECM)

T issue
q u a lityM acroscopic

b iophysica l
s tim u li

In e rt ECM

M D

In e rt ECM
M icroscop ic
b iophysica l

s tim u li

B iochem ica l
s ig na ls

R  &  ED

Stimuli reduction Mechanctransduction

Tissue quality (calls)

Figure 3-4: Block diagram representation of the mechanobiological response of FLBT under biophysical 
stimuli including the impact of viscoelasticity/viscoplasticity. In blue: Under macroscopic biophysical 

stimuli, the inert extracellular matrix (ECM) undergoes mechanical degradation (MD) which affects the 
time rate of change of tissue quality (>0. In green: The ECM reduces the macroscopic stimuli applied to 

the tissue as a whole into microscopic stimuli detected by the cells. This process is called 
mechanotransduction. The resulting biochemical signals instruct the cells to repair (R) or use enzymatic 

degradation (ED) on the ECM, which again affects X. In red: As the tissue progresses in response to 
stimuli, its quality X changes. Thus, the microscopic stimuli, biochemical signals, R, ED and MD also 

progress, as illustrated by the tissue quality feedback. In orange: Because of viscoelasticity and 
viscoplasticity, the microscopic stimuli sensed by the cells change over time, even though the 

macroscopic biophysical stimuli remain constant The spring and dashpot model used to represent these 
macro-mechanical behaviours in the block diagram refers to the widely used Zener model in linear

viscoelasticity.

the time rates o f change o f compliance and stiffness [Wang, Ker et al. 1995; Wren, 

Lindsey et al. 2003; Fung, Wang et al. 2009; Fung, Wang e t al. 2010; Parent G 2011) 

accelerate before rupture. Under strain-controlled stimuli, however, the peak stress 

decreases nonlinearly over time (Figure 3-5 c)(Cousineau-Pelletier P 2009).

From a micro-structural point o f view, the ECM of tendons (w ithout cellular activity) 

subjected to stress-controlled dynamic stimuli exhibit histological alterations in the 

collagen network, increasing nonlinearly w ith  fatigue levels (Elliott, Robinson et al. 

2003; Wren, Lindsey et al. 2003; Parent G 2011), and developing in a non-uniform
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fashion over the tendon (Fung, Wang et al. 2009; Parent G 2011). From a macro- 

structural point o f view, tendon diameter increases w ith  damage (Lanir, Salant et al. 

1988).

3.6.2 Cellular response to biophysical stimuli

The pathway relating macroscopic biophysical stim uli to cellular response is illustrated 

in Figures 3-4 (in green) and 3-A-l. First, macroscopic stim uli on the tissue are reduced 

to microscopic stim uli detected by the cells, as illustrated by the magnifying glass. The 

ECM acts as a transfer function converting macroscopic biophysical stim uli into 

microscopic stimuli: flu id flow  (Butler, Kohles et al. 1997; Sander and Nauman 2003), 

ion and molecule movements and gradients (Grodzinsky 1983), pressure gradients 

(Haemer, Carter et al. 2012), as well as stress and strain in the ECM which affect the 

individual cells (Matyas, Edwards et al. 1994; Arnoczky, Lavagnino et al. 2002; Screen 

HRC 2003; Upton, Gilchrist et al. 2008; Gupta, Seto et al. 2010; Lai and Levenston 2010). 

Then, these microscopic stim uli are sensed by the cells through different mechanisms 

including membrane proteins, the cytoskeleton, stretch activated channels, and prim ary 

cilia as presented in different review articles (Wang 2006; Janmey and McCulloch 2007; 

Wang, Thampatty et al. 2007; Wang N 2009). These mechanisms transform the 

microscopic stimuli into biochemical signals that are detected by the cells, a process 

called "mechanotransduction". In response to these biochemical signals, the live cells 

can react through repair (R) o f the ECM via the secretion and assembly o f molecules 

such as collagen (Kjaer, Magnusson et al. 2006; Devkota, Tsuzaki et al. 2007; Kjaer, 

Langberg et al. 2009), or enzymatic degradation (ED) o f the ECM by means of 

production and activation o f proteases such as matrix metalloproteinases (MMPs) 

(Arnoczky SP 2007; Devkota, Tsuzaki et al. 2007; Cousineau-Pelletier P 2009). 

Moreover, i f  the magnitude and duration o f the microscopic stimuli are too high, the 

cells may undergo apoptosis, a programmed cell death, as a result o f activation of 

intracellular stress-activated protein kinases (Yuan, Wang et al. 2003). I f  the magnitude 

and duration o f the microscopic stim uli are too low, cells may also undergo apoptosis 

(Woo SL-Y 2007).
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Figure 3-5 : Manifestation of material viscoelasticity/viscoplasticity under dynamic stimuli. (A) Under 
stress-controlled stimuli, mean strain follow a triphasic pattern (A), compliance follows a U curve (B) 

while stiffness follows a U-inverse curve (B). Under strain-controlled stimuli, the peak stress decreases
nonlinearly over time (C).

With regard to the process o f ED, studies have shown an increase in matrix 

metalloproteinase (MMP) production under stress deprivation (Arnoczky, Lavagnino et 

al. 2007; Arnoczky, Lavagnino et al. 2008; Gardner, Arnoczky et al. 2008). The same 

outcome can be observed under dynamic stimuli, but in a magnitude- and duration- 

dependent manner (Devkota, Tsuzaki et al. 2007). Moreover, tendinopathic tendons 

exhibit MMP up-regulation. Finally, in the R process, studies have shown that collagen
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and glycosaminoglycan productions are induced by suitable mechanical stimulation 

(Screen, Shelton et al. 2005; Kjaer, Magnusson et al. 2006; Devkota, Tsuzaki et al. 2007; 

Maeda, Shelton et al. 2007; Kjaer, Langberg et al. 2009; de Almeida, Tomiosso et al. 

2010).

3.6.3 Global FLBT response to biophysical stimuli

The global FLBT response to biophysical stim uli combines the ECM response (Figure 3- 

4 in blue) and the cellular response (Figure 3-4 in green). (Please note that Figure 3-A -l 

in the Appendix also shows global FLBT mechanobiological response but w ithou t using 

the block diagram representation). The competitive dynamics o f MD, ED and R regulate 

tissue mechanobiological response (TMR), which can be expressed, as a firs t 

approximation, as: TMR = R - MD - ED where X r *  Xmd *  Xed. These differences in repair 

and degradation rates occur because, in ter alia, protein expression takes time to occur. 

Moreover, repair and degradation rates vary in different ways according to the 

biophysical stim uli (amplitude, frequency, rest periods, etc.) and tissue quality. For 

example, immobilization increases Xed but decreases X r  and Xmd.

Thus, depending on the biophysical stimuli, TMR can lead to tissue homeostasis, 

improvement or degeneration in an inverse-U relationship (ScienceDirect 2011). The 

clinical implications are that immobilization (under-stimulation) results in tissue 

weakening (Woo, Gomez et al. 1982; Jozsa LG 1997; Wang, losifidis et al. 2006; Woo, 

Abramowitch et al. 2006; Woo SL-Y 2007), while tra in ing (stimulation) results in 

improvement o f tissue mechanical performance (Woo, Gomez et al. 1982; Wang, 

losifidis et al. 2006), and overtraining or overuse (over-stimulation) results in tissue 

damage (Jozsa LG 1997; Wang, losifidis et al. 2006; Woo, Abramowitch et al. 2006; Woo 

SL-Y 2007).

As tissue degrades or improves in response to biophysical stimuli, the quality o f the 

ECM is altered (Kannus and Jozsa 1991; Jarvinen, Jozsa et al. 1997; Jozsa LG 1997; Cook 

JL 2004; Scott, Cook et al. 2007; Woo SL-Y 2007; Maffulli, Longo et al. 2008; Xu and 

Murrell 2008). Cell attributes, such as shape, phenotype and live/dead state, also vary
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(Jarvinen, Jozsa et al. 1997; Jozsa LG 1997; Cook JL 2004; Scott, Cook et al. 2007; Woo 

SL-Y 2007; Maffulli, Longo et al. 2008; Xu and M urrell 2008). Consequently, under 

constant macroscopic stimuli, the microscopic stimuli, biochemical signals, R, ED and 

MD w ill progress and change according to feedback from the tissue quality (Figure 3-4 

in red).

These observations led Arnockzy e ta l (Arnoczky SP 2007)to propose a new hypothesis 

in tendinopathy: microtraumas to the collagen structure create an environment of 

mechanobiological under-stimulation, leading to pathological changes, such as 

increased MMP and apoptosis. In other words, as the collagen structure degrades, fewer 

microscopic stimuli are received by the individual cells. Consequently, cells eventually 

become under-stimulated and enter the left part of the Inverse-U curve, leading to 

further tissue degradation.

3.7 Im pact o f ECM viscoelasticity and viscoplasticity on live FLBT 

response to biophysical stim uli

The response o f live FLBT to biophysical s tim uli is affected by the 

viscoelastic/viscoplastic behaviours o f the ECM (Figure 3-4 in orange). During the 

application o f biophysical stimuli, we observe that the microscopic stim uli sensed by 

the cells change over time, even though the macroscopic biophysical stim uli remain 

constant. Static or dynamic stress relaxation and creep experienced by the ECM result 

in microscopic stimuli (e.g. flu id flow and cell deformation) tha t vary over time. 

Moreover, these stim uli progress differently under strain- or stress-controlled 

macroscopic stim uli (Figure 3-1). This necessarily has consequences fo r the cell's 

mechanobiological response.

The impact o f viscoelasticity/viscoplasticity on the cellular response is a complex one. 

For example, under dynamic stress stimuli, the ECM undergoes dynamic creep, which 

could lead to micro-damage if  the degradation rate (X md + X ed)  were to be greater than 

the repair rate (X r). As micro-damage to the ECM occurs, X md increases (Wang, Ker et al. 

1995; Wren, Lindsey et al. 2003; Fung, Wang et al. 2009; Parent G 2011). Moreover, the

59



www.manaraa.com

signals sent to the cells change, and i f  the cells become under-stimulated, X ed increases 

(Lavagnino, Arnoczky et al. 2006; Arnoczky SP 2007). A "vicious circle" would emerge 

at this po in t However, i f  rest periods were to be established between stimulation 

periods in order to allow the ECM to recover its in itia l length, and to provide time for 

the cells to repair the micro-damage, the outcome could be completely different.

Similarly, under dynamic strain stimulation, the ECM undergoes stress relaxation, 

which leads to cells becoming under-stimulated. Consequently, Xed increases and, w ith  

a damaged structure, cell stimulation continues to decrease. Again, this potentially leads 

to a vicious circle. However, i f  the amplitude o f the strain stimulation is increased 

regularly to maintain a minimum peak-to-peak stress amplitude, or i f  rest periods are 

included to allow for stress recovery, the outcome could once again be completely 

different.

Our group recently obtained experimental data to support this (Jafari; Yoan Lemieux- 

LaNeuville 2012). The aim of our study was to investigate the effect o f two 

characterization protocols on tissue mechanobiological alterations over time. We had 

two groups o f live healthy tendons. We subjected the first group to mechanical stimuli 

at physiological amplitudes inside a bioreactor for 3 days. We subjected the second 

group to the same mechanical stimuli but also to 24 stress relaxation tests at 

physiological amplitudes each day. We compared alterations in each group over time 

and observed that stress relaxation tests at physiological amplitudes modified the 

tendon response to mechanical stimulation in vitro. These results are a demonstration 

o f the effect o f viscoelasticity/viscoplasticity o f tissue on its response to mechanical 

stimuli.

3.8 Im pact of ECM viscoelasticity and viscoplasticity on in vitro 

mechanobiological research and in vivo clinical applications

Knowing that viscoelasticity and viscoplasticity affect live FLBT response to biophysical 

stimuli, researchers must consider these macro-mechanical behaviours when designing 

experimental protocols for bioreactor studies or when attempting to improve clinical
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applications. For in vitro studies, this translates into taking enlightened decisions about 

the following concerns:

• Strain- or stress-controlled stimuli: Many laboratories choose to w ork under 

strain- or displacement-control (Lavagnino, Arnoczky et al. 2003; Screen, 

Shelton et al. 2005; Maeda, Shelton et al. 2007; Cousineau-Pelletier P 2009), 

possibly because i t  is much simpler to implement in a bioreactor. Other 

laboratories implement stress- or force-control to mimic tendons which transm it 

forces from the muscle to the bone in vivo (Schechtman and Bader 1997; Ker, 

Wang et al. 2000; Yamamoto, Kogawa et al. 2005; Parent G 2011). This decision 

is not an easy one, especially as this subject has not been explored in depth. 

However, as explained earlier, i t  w ill have an impact on mechanobiological 

response because o f tissue viscoelasticity and viscoplasticity and therefore 

needs to be considered.

• Stimulus history: Since FLBT contain live cells, but also because o f the ir macro

mechanical behaviour, FLBT mechanobiological response is affected by rest 

periods. Prelim inary testing can be easily done to explore the impact o f rest 

periods on tissue response. However, i t  is im portant to keep in m ind that as the 

tissue progresses over time, the impact o f rest periods may also progress.

• Intelligent bioreactors or adjustable protocols: In response to macroscopic 

biophysical stimuli, tissue quality (o f ECM and cells) changes. Consequently, the 

macro-mechanical behaviour and mechanobiological response also change. For 

optimal tissue improvement, macroscopic biophysical stim uli should be 

continually adjusted to tissue quality. This could be done manually or through 

intelligent bioreactors. However, once again this subject has not yet been 

thoroughly explored.

• Mechanical characterization protocols: Viscoelasticity and viscoplasticity 

could also have an impact on the characterization protocols used to evaluate 

tissue progression in bioreactor studies o f FLBT response to biophysical stimuli. 

In such studies, characterization o f tissue progression is essential to
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understanding and eventually predicting its response to mechanical stimuli. 

There is, however, a paradox in measuring progression in live tissue: how can 

we accurately measure tissue progression over time i f  the tissue is also reacting 

to our measurement methods? (Jafari ; Yoan Lemieux-LaNeuville 2012)The 

methods used to observe tissue progression over time could introduce a bias 

because of the impact o f stimulus history on ECM macroscopic behaviour (Jafari; 

Yoan Lemieux-LaNeuville 2012).

W ith regard to clinical applications, tissue viscoelasticity and viscoplasticity are 

unavoidable concepts in the design and improvement of mechanobiology based 

treatment plans. For example, in in ju ry  prevention, i t  has been proposed that adequate 

rest between periods o f physical activity is required to avoid ligament creep and its 

consequences such as jo in t laxity, instability and osteoarthritis (Solomonow, He Zhou et 

al. 2000; Solomonow 2004). In current rehabilitation practices, treatments using static 

creep and stress-relaxation are common. Examples include stretching to increase the 

range of motion (Kisner C 2007) or using orthotics over long periods to treat 

deformities such as scoliosis (Nordin and Frankel 2001). Treatments using dynamic 

stimulation also exist Early mobilisation after tendon repair is one example. In that 

case, passive motion (i.e. w ithout muscle contraction) to stimulate tissue repair and to 

avoid contracture caused by immobilisation (Kisner C 2007). Later, to minimize 

impairment o f muscle performance, motion should progress from passive to active 

exercise in the following sequence: isometric, concentric, and fina lly eccentric 

movements (Kisner C 2007).

Another clinical application is the treatment o f tendinosis, which can be very 

challenging. Studies have shown that approximately one-third o f athletes w ith  lower 

extremity tendinosis demonstrate poor outcomes w ith  either conservative therapy or 

surgical treatment (Cook, Khan et al. 1997; Chiara Vulpiani, Guzzini et al. 2003). Tendon 

mechanical properties have been shown to change w ith  strength tra in ing  but more 

research is needed to shed light on the theoretical framework supporting the 

mechanotherapeutic effect o f different types o f exercise on tissue repair. For the past 

two decades, the preference o f eccentric tra in ing over concentric tra in ing fo r the
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conservative management of tendinopathy has been accepted, and whether eccentric 

exercise is more effective than other types o f exercise to reduce symptoms or promote 

healing remains unresolved (Wasielewski NJ 2007), Therefore, we need to find a 

consensus on optimal parameters (duration, frequency, magnitude and type of 

mechanical stimulation) that should be applied to the tendon during the training 

program that w ill improve and/or accelerate the healing process w ithou t causing more 

damage to the tissue. This w ill be very challenging. For example, the maximum 

deformation and strain induced in tendons from in vivo muscle loading vary 

considerably according to variables such as age and sex, w ith  values ranging from 2.5% 

to 10% (Maganaris and Paul 1999; Kubo, Kanehisa et al. 2001; Kubo, Kanehisa et al. 

2003; Kubo, Kanehisa et al. 2003). This suggests that large inter-individual variations in 

tendon structural properties, jo in t mechanics and muscle-tendon-bone adaptation 

responses can be expected, and that a "one size fits all” treatment protocol may not be 

an option.

In order to improve clinical applications, we need a better understanding o f in vivo 

biophysical stim uli induced by daily activities or exercises:

Muscle-tendon unit: For in vivo situations, we must consider the entire muscle-tendon 

unit and not solely the tendon as we do in in vitro bioreactor studies. The muscle, 

passive or contracted, has mechanical properties that affect the reaction o f the whole 

tendon-muscle un it to biophysical stimuli. Moreover, the maximal force generated by a 

muscle is a function o f its length and speed o f contraction (Oatis 2009). Consequently, 

during exercises conducted at maximal muscle force, the load on the FLBT may vary 

w ith  time. Studies to deepen our understanding of the tendon stim uli in vivo are 

therefore required. These studies should not only look at tendon stim uli over a few 

repetitions, but also over longer periods such as a w ork shift, since stim uli may change 

over this time period.

Strain- or stress-controlled stimuli: In vivo, the type o f stress- or strain-control used 

the movements has not yet been clearly identified in real-life situations. Therefore,
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making parallels between in vivo and in vitro  situations is hazardous and should be 

assisted by theoretical and experimental investigations.

3.9 Concluding rem arks and future perspectives

Despite progress in mechanobiology, there are s till significant gaps in knowledge, in 

particular regarding the impact of: 1) the type o f stimulus input (strain- or stress- 

controlled stimulus), 2) stimulus history, 3) changes in tissue quality, and 4) methods 

used to observe alterations in tissue over time. These topics have not been sufficiently 

investigated in bioreactor studies examining pathophysiology or functional tissue 

engineering, or even in in vivo clinical studies. Research in these areas is therefore 

required.

The authors’ view is that dose-response experiments alone would not be sufficient to 

investigate these subjects because there are too many input possibilities (strain- or 

stress-controlled stimulus, amplitude, frequency, rest periods, tissue quality, etc.). 

Experiments could thus conceivably last for many years. Instead, we believe that 

theoretical models should firs t be created to relate macroscopic to microscopic stimuli 

for different tissue qualities. Then, well planned dose-response experiments should be 

conducted in conjunction w ith  modelling, to identify the transfer functions between 

macroscopic stimuli, microscopic stimuli, ECM response and cellular response.

The theoretical model and experimental data together should facilitate an 

understanding o f tissue mechanobiological response and allow prediction o f the 

optimal stimulus to minimize X md, and X ed and maximize Xr. For example, a 

combination of both types o f stimulus input (strain- and stress-controlled stim uli), each 

used at different time points during FLBT rehabilitation, could be the best strategy to 

promote tissue healing, bearing in mind that X r, X md, and X ed all vary according to tissue 

quality, tissue viscoelasticity/viscoplasticity and stimulus input. The new knowledge 

could ultimately be used to improve in vitro  and in vivo applications, such as functional 

engineered tissues, rehabilitation following tendon repair surgery, the ligamentization 

process following anterior cruciate ligament repair and the healing o f tendinosis. For
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clinical applications however, a better understanding o f in vivo biophysical stimuli 

induced by daily activities or exercises is required, as pointed out earlier.

Key Points

1) Fibrous load-bearing tissues (FLBT) are well organized biopolymers containing 

a high proportion o f extracellular matrix (ECM). Thus, the molecules network 

forming the ECM is responsible fo r the tissue macro-mechanical behaviours.

2) FLBT have viscoelastic or viscoplastic macro-mechanical behaviours. They 

exhibit reversible or non-reversible deformation accompanied by energy losses 

which depend on ECM quality variables, such as structure, composition and 

cross-linking.

3) Because o f the ir viscoelastic or viscoplastic macro-mechanical behaviours, FLBT 

reaction to biophysical stim uli is influenced by the type of stimulus input (strain- 

or stress-controlled stimulus) and stimulus history (including rest periods).

4) Under macroscopic biophysical stimuli, ECM molecules are subjected to stress 

and strain, and could thus undergo mechanical degradation (MD). Changes to 

mechanical properties and ECM structure related to MD in FLBT are non-linear 

over time and heterogeneous across the tissue.

5) When FLBT are subjected to macroscopic biophysical stimuli, these stimuli are 

scaled down to microscopic biophysical stim uli which are, in turn, transformed 

into biochemical signals that the cells can sense. In response to these signals, the 

cell can degrade the ECM via enzymatic degradation (ED) or repair (R) it.

6) The tissue global mechanobiological response is the result o f competitive 

dynamics between degradation and repair leading to an inverse-U relationship 

between stimulation and tissue quality. Moreover, the three processes o f R, ED 

and MD involved in these dynamics are inter-related, since they all affect and 

depend on ECM and cell quality at the same time. They also have different time 

rates o f action.
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7) In conclusion, viscoelasticity and viscoplasticity o f FLBT influence tissue 

mechanobiological response and must be considered when identifying the 

macroscopic biophysical stim uli to promote the healing of native tissues, to 

optimize rehabilitation after surgery or to improve engineered tissues.
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Appendix

Below are the definitions the authors consider to be vita l to understanding the ideas 

contained in this paper.

Tissue quality: Condition of a tissue (ex: healthy, damaged) determined by different 

parameters, such as composition, structure and cross-linking for the ECM, or v iab ility  

and proliferation for cells.

Macroscopic biophysical stimuli: Static or dynamic mechanical loadings applied 

macroscopically to the tissue. Biophysical stim uli can be created in vitro  inside a 

bioreactor, or in vivo through daily activities such as at w ork  or during training.

Strain-controlled stimuli: Macroscopic biophysical stim uli applied under strain 

control, for example, a sinusoidal stimulus o f 1% strain amplitude applied at 1Hz to the 

tissue.

Stress-controlled stimuli: Macroscopic biophysical stim uli applied under stress 

control, for example, a sinusoidal stimulus o f 1 MPa stress amplitude applied at 1Hz to 

the tissue.

Macro-mechanical behaviour: A macroscopic mechanical behaviour o f a material, 

which in this context refers specifically to viscosity, elasticity and plasticity, or to the ir 

combinations (viscoelasticity and viscoplasticity).

Manifestation of ECM behaviour: A macroscopic mechanical reaction o f the 

viscoelastic or viscoplastic ECM to biophysical stimuli. For linear elastic materials, for 

example, this reaction is governed by Hook's law. This means that stress and strain are 

linearly related via Young's modulus.

Microscopic biophysical stimuli: Biophysical stim uli inside the tissue are detected by 

the individual cells; this includes flu id flow, ion and molecule movements and gradients, 

pressure gradients and stress/strain in the molecules that compose the ECM. A 

microscopic biophysical stimulus is produced when a macroscopic biophysical stimulus 

is applied to the tissue.
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ECM response: Microscopic mechanical reaction o f the ECM to biophysical stimuli, 

which in this context refers to the mechanical degradation o f the ECM

M echanotransduction: The conversion o f microscopic biophysical stim uli into 

biochemical signals. One example o f mechanotransduction is the movement o f ions 

through channels activated by the mechanical stretch of the cellular membrane.

Cellu lar response: The biological reaction o f live cells to biophysical stim uli, which in 

this context refers to the repair and enzymatic degradation o f the ECM.

Mechanobiological response: Global reaction of live tissues to biophysical stimuli. 

This includes ECM and cellular responses, and therefore mechanical degradation, repair 

and enzymatic degradation.
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Figure 3-A-l: Illustration of the mechanobiological response of FLBT under biophysical. Under 
macroscopic biophysical stimuli, the inert extracellular matrix (ECM) undergoes mechanical degradation 

(MD). At the same time, the ECM reduces the macroscopic stimuli applied to the tissue as a whole into 
microscopic stimuli detected by the cells. This process is called mechanotransduction. The resulting 

biochemical signals instruct the cells to repair (R) or use enzymatic degradation (ED) on the ECM. As the 
tissue is altered in response to stimuli, the quality changes. Thus, the microscopic stimuli, biochemical

signals, R, ED and MD also progress and so on.
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4. Mechanical characterization tests o f physiological 

amplitude conducted at regular intervals can affect tissue  

response to mechanobiological stimuli

4.1 Avant-propos

Auteurs et a ffilia tio n : Leila Jafari1, Yoan Lemieux-LaNeuville1-2, Denis Gagnon2, Eve 

Langelier1. 1. PERSEUS, Department o f Mechanical Engineering, Universite de 

Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada. 2. Department of Kinanthropology, 

Universite de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada

Date de soumission: 21 Jan 2013

Revue: Biomechanics and modeling in mechanobiology

T itre  en francais: Des essais de caracterisation mecanique d'amplitude physiologique 

realises a intervalles r6guliers peuvent influencer la reponse tissulaire aux stimuli 

mecanobiologiques

Resume francais:

La mecanobiologie joue un role majeur dans le domaine musculo-squelettique, 

notamment en genie tissulaire de meme que dans la prevention et la guerison des 

blessures. Dans 1'etude de la mecanobiologie des tissus en bioreacteur, la 

caracterisation de revolution des tissus est essentielle pour comprendre et 

eventuellement predire leur reponse aux stim uli mecaniques, mais malheureusement, 

les methodes utilisees sont souvent destructives (e.g. histologie ou essai de rupture). Ce 

serait neanmoins un grand avantage d'avoir un porta it de Involution de la qualite des 

tissus dans le temps. II y a cependant un paradoxe lors de la mesure de revolution des 

tissus vivants dans le tem ps: comment pouvons-nous mesurer precisement revolution 

des tissus dans le temps s’ils rSagissent aussi a nos methodes de mesure? Les methodes 

utilisees pour observer invo lu tion des tissues dans le temps peuvent induire un biais 

qui peut varier en fonction du protocole d'observation. Dans cette etude, nous avons
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examine l’hypothese que des essais de relaxation de contrainte d’amplitude 

physiologique realises a des intervalles reguliers entre les periodes de stimulation ne 

modifient pas 1’evolution des tissus dans le temps. Nous avons soumis des tendons sains 

et vivants a des stimuli mecaniques d'amplitudes physiologiques a l’ interieur d’un 

bioreacteur pendant 3 jours. Nous avons regroupe les tendons selon le protocole de 

caracterisation (0 ou 24 essais de relaxation d'amplitude physiologique chaque jour) et 

nous avons compare 1’evolution des groupes dans le temps. Les essais de relaxation de 

contraintes d’amplitude physiologique ont modifid 1’evolution des tendons en reponse 

aux stimuli mecaniques in vitro. De fagon gdnerale, le module pointe a augmente dans le 

temps pour le groupe de 0 essai de relaxation de contrainte alors qu 'il a d'abord 

diminue puis legerement augmente pour le groupe de 24 essais de relaxation de 

contrainte chaque jour. En conclusion, l ’insertion d'essais de relaxation de contrainte 

d’amplitude physiologique pendant les periodes de repos entre les stim uli mecaniques 

peut influencer revolution des tissus dans le temps.
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4.2 Abstract

Mechanobiology plays a major role in skeletal tissue engineering; it  is also an important 

field of study in the prevention and healing of certain musculoskeletal disorders. In 

bioreactor studies o f tissue mechanobiology, characterization of tissue progression is 

essential to understanding and eventually predicting its response to mechanical stim uli 

but unfortunately, the methods used are often destructive (e.g. histology o r rupture 

test). It would nevertheless be a great advantage to have a portra it o f tissue quality 

progression over time. There is however a paradox in measuring progression in live 

tissue: how can we accurately measure tissue progression over time i f  the tissue is also 

reacting to our measurement methods? The methods used to observe tissue 

progression over time can introduce a bias that may even vary depending on the 

observation protocol. In this study, we investigated the hypothesis that stress 

relaxation tests at physiological amplitudes conducted at regular intervals between 

stimulation periods do not modify tissue progression over time. We subjected live 

healthy tendons to mechanical stimuli at physiological amplitudes inside a bioreactor 

for 3 days. We grouped the tendons based on the characterization protocol (0 or 24 

stress relaxation tests at physiological amplitudes each day) and compared group 

progression over time. Stress relaxation tests at physiological amplitudes modified the 

tendon response to mechanical stimulation in vitro. Generally, peak modulus increased 

over time for 0 stress relaxation tests each day, whereas i t  first decreased and later 

lithely increased for 24 stress relaxation tests each day. Therefore, inserting stress 

relaxation tests at physiological amplitudes during rest periods between mechanical 

stimulation may influence tissue progression over time.

Key words

Tendon, Mechanobiology, Mechanical properties, Characterization, Progression, Stress 

relaxation
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4.3 Introduction

Skeletal mechanobiology investigates how load-bearing tissues are produced, 

maintained and adapted by cellular activity in response to physical stim uli (van der 

Meulen and Huiskes 2002). It plays a major role in tissue engineering where i t  allows us 

to develop prosthetic organs that can carry out the functions o f natural tissues in the 

body (Freed et al 2006; Guilak et al 2003). It is a significant field o f study in the 

prevention and healing o f certain musculoskeletal disorders, since many o f these 

disorders are associated w ith  inadequate mechanical loading, as reviewed by Wang and 

Thamppatty (Wang 2006; Wang and Thampatty 2006). In mechanobiology, 

characterization o f tissue progression is essential to understanding and eventually 

predicting tissue response to mechanical stimuli. Various methods are used: optical and 

electron microscopy to characterize tissue structure at d ifferent scales; Western blot 

and hydroxyproline assay to characterize tissue composition; Northern b lo t and real

time PCR to characterize gene expression; traction tests to characterize mechanical 

properties (e.g. Young modulus and ultimate tensile stress and strain).

Unfortunately, these methods are often destructive (Kortsm it et al 2009). We therefore 

cannot use them at regular intervals on the same sample to characterize progression 

over time. Moreover, i t  is sometimes impossible to combine any tw o destructive 

characterization methods: this either lim its the available information on the tissue 

quality or requires a greater number o f specimens. For example, the traction test 

damages tissue structure and introduces bias to microscopic analysis. Another example 

is when we take a biopsy for microscopic analysis on a tissue sample intended for a 

traction test: this weakens the sample and skews the mechanical characterization.

A few authors have already recognized the need to describe tissue quality progression 

(Cousineau-Pelletier and Langelier 2010; Guilak et al 2003; Kortsmit et al 2009; Lujann 

et al 2011; Shulz et al 2008). It would certainly be useful to have a p o rtra it o f the 

progression o f tissues over time, which would take the form  of homeostasis (no 

change), degeneration or improvement In the special case o f load bearing tissues, the 

characterization o f the mechanical aspects o f tissue quality would inform  us o f the
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tissue's capability to fu lfill its prim ary function, i.e. to transmit, damp and/o r support 

loads (Guilak et al 2003; Lujann et al 2011). To achieve this objective, non-destructive 

mechanical tests such as stress relaxation, creep or dynamic tests o f physiological 

amplitudes can be used. When conducted at regular time intervals, these tests provide a 

picture o f tissue mechanical properties over time.

In the field o f cell mechanics, Bao and Suresh (2003) formulated a paradox: "how can 

we measure the mechanical behaviour o f living cells i f  they react to our measurement 

tools?" A sim ilar paradox can be formulated for the progression o f live tissue: how can 

we measure tissue progression over time i f  it  reacts to our measurement methods? At 

the moment, we do not know i f  the "observer effect" can be set aside, since we do not 

know if  existing methods to observe tissue progression over time modify tissue 

progression in a negligible way or n o t This unanswered question is im portant because 

the observer effect could introduce a bias between reality and observation. Moreover, 

this bias could vary w ith  the observation protocol, and make it  d ifficu lt to compare 

results between studies.

We investigated the hypothesis that stress relaxation tests at physiological amplitudes 

conducted at regular intervals do not modify tissue progression over time. This 

hypothesis is based on previous w ork done on freshly isolated articular cartilage where 

i t  was observed that small amplitude stress relaxation tests conducted repetitively over 

a 12-hour period superposed very closely as i f  they did not impact the next one 

(Langelier and Buschmann 2003).

To test our hypothesis, we subjected live tendons to mechanical stimulation at 

physiological amplitudes inside a bioreactor for 3 days. We divided the tendons into 

two groups. In each group, we included 0 or 24 stress relaxation tests at physiological 

amplitudes each day. We then compared group progression over time.
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4.4 M aterials and Methods 

Tissue Explant Isolation and Preparation

All animal care and handling were approved by the Council o f Animal Protection at the 

Universite de Sherbrooke. Eight Sprague-Dawley rats between the ages o f 4 and 6 

months were sacrificed using carbon dioxide. Tendon isolation and preparation were 

conducted as described in previous studies (Bruneau et al 2010, Cousineau-Pelletier 

and Langelier 2010). All manipulations presented in this section were performed in 

cold D-PBS IX  (311-410-CL; Wisent Inc., St-Bruno, Canada) containing lg /L  glucose 

(609-037-EL; Wisent Inc.) and 1% antibiotic-antimycotic (15240-062; Invitrogen, 

Burlington, Canada). Four tendons were isolated from  each ra t tail w ith in  an hour of 

resection (Figure 4-1). Following isolation, the cross-sectional tendon areas were 

evaluated using an optical micrometer (Parent et al 2010). They were then washed 5 

times under the biosafety cabinet. For mechanical characterization and stimulation, the 

tendons were transferred into the bioreactor (Parent et al 2011). The ends o f the 

tendons were wound around cylinder-shaped anchors and allowed to d ry  brie fly  on the 

top face o f the anchors. A small drop o f ethyl cyanoacrylate (10300; Krazy Glue, 

Columbus, OH) was applied to the portion o f the tendon at the top of the anchor.

| 2 tendons ] 
1

[ 4 tendons ]

2 tendons |

Group 1 
24 relaxations

k t '
Mean

Group 2 
0 relaxation

I
Mean

N=8 rats

Figure 4-1: Number and distribution of the tendons for each ra t For statistical analysis of the peak-to- 
peak modulus between two groups, we used Wilcoxon matched-pairs signed rank test
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Tissue Culture

During the experiment, the tendons were maintained in DMEM (12800-017; Invitrogen, 

Burlington, Canada) supplemented w ith  3.7 g /L  of sodium bicarbonate (600-105-CG; 

Wisent Inc.), 10% FBS (090150; Wisent Inc.), and 1% antibiotic-antimycotic solution.

Mechanical Stimulation

After temperature stabilization in the bioreactor at 37°C, the specimens were subjected 

to the following stimulation protocol. The in itia l zero strain reference was defined by 

achieving a tension load o f 3g at equilibrium. Preconditioning was performed w ith  a 

series o f 120 sinusoidal waves at two different amplitudes (60 cycles at 1% strain; 60 

cycles at 2% strain) executed at 1 Hz. The final zero strain reference was defined by 

again reaching a tension load o f 3g at equilibrium. Thereafter, the 3-day stimulation 

protocol was used: each day, the tendons were subjected to four periods o f 6h each 

composed of 30min o f stimulation (sine wave pattern; 1.2% strain; 1Hz) and 5 h 30 min 

of rest (0% strain).

Impact of Stress Relaxation Tests and Recovery Periods

To highlight the impact o f mechanical tests at physiological amplitudes on the 

mechanobiological response, we included stress relaxation tests (1% /s strain rate, 

1.2% strain, 30s pause) in the stimulation protocol. The strain amplitude was selected 

based on prelim inary traction tests (data not shown) in which the linear portion o f the 

stress-strain curve spread up to about 1.5% strain. We divided the tendons into two 

groups (Figure 4-1). In group 1 (N= 8), 24 stress relaxation tests were integrated each 

day (1 per hour). In group 2 (N= 8), no relaxation tests were integrated (Figure 4-2).

Mechanical Characterization of Tissue Progression

To characterize the changes in mechanical properties over the 3-day period, we 

adapted the method developed by Cousineau-Pelletier and Langelier (2010). We 

evaluated the changes in the peak-to-peak modulus produced by the stimulation 

protocol. We used the modulus in the last ten cycles o f the firs t stimulation period as a
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reference (Mref). Every 6 hours, we compared the modulus fo r the last ten cycles of 

stimulation (M) to this reference value (Figure 4-3).

G roup 1:
2 4  re laxation  

tests each day

G roup 2:
0  re laxation  

tes t each day

3 0 m ln 5 h 3 0 m ln

24-hour period

M echanical s tim u lation  (sine w ave pattern , 1.2%  strain, 1Hz, 30  m inutes)

Stress re laxation  test (1%  strain ra te , 1.2%  strain; 30s pause)

Figure 4-2: Integration of stress relaxation tests between stimulations

We calculated the peak-to-peak modulus as peak-to-peak stress divided by peak-to- 

peak strain. The stresses were evaluated as the ratio of the forces measured w ith  load 

cells over the in itia l tissue cross-sectional areas. The strains were calculated as the ratio 

of the changes in length measured w ith  encoders over the in itia l tendon length. We 

calculated the response o f each tendon as:

Change (%) = — -  x 100 (1 )

78



www.manaraa.com

Reference
Evaluation

Ml
G roup 2:
0  re laxation  
tes t each d ay

3 0 m ln

24-hour period

Figure 4-3: Evaluation of changes in peak modulus. The mean peak-to-peak modulus in the last 10 cycles 
of the first stimulation period was used as a reference. Every 6 hours, the mean peak-to-peak modulus in 

the last 10 cycles of stimulation was compared to the reference value

Statistical Analysis

We used the Wilcoxon matched pair signed rank test to verify whether there is a 

significant difference between tw o tendon groups. We used the non-parametric test 

since the population was small and did not have a normal distribution. For each rat, the 

data sets obtained for two tendons were averaged in each group (Figure 4-1). Thus, for 

each rat, a pair o f data sets was always available: one set for O-relaxation group, and 

another one for 24-relaxation group. The significance was set at p < 0.05.

4.5 Results 

Change in Peak Modulus

The number o f stress relaxation tests influences changes in the peak-to-peak modulus 

as shown in Figure 4-4. Tendons subjected to 0 stress relaxation tests each day saw 

their peak modulus increase to approximately 115% in three days. However, over the 

same period, tendons subjected to 24 stress relaxation tests each day saw the ir peak 

modulus decrease to approximately 93.5%. The difference between the peak modulus 

of two groups was significant at all time points.
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Figure 4-4: Changes in peak modulus of each group (mean ± SD). At the end of day 3, changes in peak 
modulus were 93.5 ±35.1% for group 1, and 115 ± 20.5% for group 2. Stars indicate significant

differences between the 2 groups.

4.6 Discussion

This study shows that stress relaxation tests at physiological amplitudes can modify the 

response of healthy tendons to in vitro  mechanical stimulation. The changes in 

measured peak-to-peak modulus varied w ith  the number o f repetitions per day as a 

negative impact on stress recovery could be measured w ith  the 24 daily stress 

relaxation tests.

It is worth mentioning that our modification to the method of characterizing the 

changes in mechanical properties over the 3-day period did not alter the conclusion of 

the study. Previously (Cousineau-Pelletier and Langelier 2011), we had compared the 

mean peak-to-peak stress values o f the last 5 minutes o f stimulation w ith  the reference 

value, which was the maximum peak-to-peak stress value o f the firs t m inute o f the 

whole stimulation. We implemented the "reference" modification to elim inate the effect 

o f dynamic relaxation on the reference value and to m inim ize the intra-animal variation 

which is smaller after dynamic relaxation. Also, we implemented the "modulus vs stress
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modification” to account fo r strain. We statistically tested the results calculated in this 

manner. Results fo r both groups (0 vs 24 relaxations/day) were significantly different 

at 18, 30, 42, 54 and 60h w ith  p<0.05; and at 12, 24, 36, 48 and 66h w ith  p<0.08. The 

difference in the statistical significance o f these results compared to our new method of 

evaluating changes in mechanical properties can be explained by the pairing, which was 

significant w ith  the new method (p<0.05) but not w ith  the older method. Therefore, our 

conclusion remains unchanged: stress relaxation tests at physiological amplitudes can 

modify the response o f healthy tendons to in v itro  mechanical stimulation.

These results may have implications in other fields such as the study o f time - 

dependent spine stability and related risks o f in ju ry as well as low er back pain. As 

reviewed by Solomonow (2011), there are two categories o f spine stabilizers. The firs t 

category includes the passive components: the ligaments, disks, capsules and fascia, 

which stabilize the spine through the ir viscoelastic properties. The second category 

includes the dynamic components: muscles and their sensory-motor control, which 

stabilize the spine through co-contraction, muscular stiffness, intra-abdominal 

pressure, and compressive force on disks. The tissues form ing the passive components 

are exposed to stretching during daily activities, inducing spine laxity. Stretching affects 

the sensitivity o f mechanoreceptors as well as the control o f muscular activity, and thus 

may influence spine stability. Rest periods are essential fo r both passive and active 

component recovery, but should the recovery period be complete rest or low  amplitude 

activities? In seeking to answer this question, our study reveals that the number of 

repetitions o f low  amplitude activities may have a substantial impact on recovery time 

and should therefore not be neglected.

The results presented in  this study can be explained by two mechanisms: viscoelasticity 

and cellular activity. When submitted to dynamic stimulations under strain control, 

tendons experience stress relaxation. This phenomenon, explained by the viscoelastic 

nature o f tendons, can be illustrated as a string which elongates s lightly at each cycle 

(up to a maximum corresponding to the stimulation amplitude). Consequently, the 

measured stress decreases at each cycle because the string is under decreasing tension. 

At rest, between the dynamic stimulation periods, the string shortens and recovers
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from stress. This recovery is partly attributed to viscoelasticity and partly to cellular 

activity. In a previous study we showed that stress recovery is greatly reduced in the 

absence o f cellular activity (Cousineau-Pelletier and Langelier 2010).

The inclusion o f stress relaxation tests can perturb stress recovery even though the 

physiological amplitude is slight (1.2%) and the period is short (30s) in comparison to 

the rest period (5h30min). Stress relaxation tests may impede stress recovery by 

slightly lengthening the tendon at each occurrence. This in tu rn  may impact cellular 

activity through stress decrease/deprivation at the cellular scale, which has been 

shown to upregulate collagenase mRNA expression and protein synthesis (Lavagnino et 

al 2003, 2005a; Arnoczky et al 2004; Lavagnino and Arnoczky 2005). As a consequence, 

the extracellular matrix, cell-matrix interactions and mechanotransduction may be 

degraded (Arnoczky et al 2007) and a vicious cycle may ensue.

Of course, many questions are raised and remain unanswered regarding the impact of 

stress relaxation tests on tissue mechanobiological response. For example, although we 

suspect that increasing strain rate, amplitude and length o f the test and decreasing rest 

periods between tests increases the impact on tissue response, we do not know the 

precise effects o f these parameters. We also do not know the effect o f the in itia l tissue 

quality (sedentary or a high level o f fitness, young or old, healthy or diabetics, etc). The 

same questions apply to creep tests and dynamic tests.

Until more is known on the subject, the stimulations themselves should be used for 

mechanical characterization as in previous studies (Androjna et al 2007; Cousineau- 

Pelletier et al 2010; Devkota et al 2007; McCulloch et al 2004; Preiss-Bloom et al 2009; 

Shulz et al 2008; Tran et al 2011) and in the present study to  analyze peak-to-peak 

modulus (Figure 4-4). Since stress relaxation tests introduce new mechanical energy to 

the tissues, they must be considered as stimulations and the ir impact must not be 

neglected. Therefore, researchers using them for mechanical characterization need to 

describe the ir characterization protocol precisely and verify its impact on the results 

and conclusion o f the ir study. Obviously, the solution o f using the stimulations for 

characterization is not a perfect one. Due to the nonlinear properties o f tissues, a
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comparison between different stimulation conditions may be complex. However, this 

observation process has an indisputable advantage: it  does not interfere w ith  tissue 

progression.

Tissue characterization during bioreactor confinement is emergent and has not yet 

been standardized. However, we do encourage researchers to implement this means of 

gathering more information on tissue progression over time while using the 

stimulations for characterization.

4.7 Conclusion

This study has shown that inserting stress relaxation tests at physiological amplitudes 

during rest periods between mechanical stimulations may influence tissue progression 

over time. As o f today, to the paradoxical question how can we measure the tissue 

progression over time i f  i t  responds to our measurement methods?, the answer would be 

to use the mechanical stim uli themselves as part o f the study design. In this way, more 

information can be gathered on tissue progression w ithout introducing new energy to 

the tissue.
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5. Unpublished m icroscopy results

In this chapter, we present the data which are not included in the second article. These 

data include the methods we used at Biometiss to characterize tissue quality 

quantitatively and semi-quantitatively based on microscopic images. W ith these 

characterization methods we tried to evaluate if  there were differences between the 

two groups of stimulated tendons: O-relaxation group, and 24-relaxations group.

The tissue quality analyses were conducted on OM and TEM micrographs. We used 

standard tissue preparation methods (Cousineau-Pelletier and Langelier 2009). Briefly, 

the samples were simply fixed by being soaked in formalin (OM), or glutaraldehyde 

(TEM). Then the samples were rinsed inside a buffer solution. The next step was 

dehydration followed by embedding the samples in a support medium for th in 

sectioning. The support medium was paraffin (OM) or epoxy resin (TEM). Finally, 

samples were cut and stained w ith  Hematoxylin/Eosin (H & E) (OM) or uranyl acetate 

and lead citrate (TEM) to add contrast. The microscopic images of samples were used 

for quantitative and semi-quantitative characterizations.

Quantitative and semi-quantitative characterization of tissue structural properties 

could be very useful to avoid inconsistency in diagnosis between specialists resulting 

from qualitative (descriptive) characterization.

We divided this chapter in two sections. In the firs t section, we present quantitative 

methods to evaluate tissue structural quality using the "National Instrum ent vision 

assistant" (Nl-Vision) program. In the second section, we present the semi-quantitative 

method, i.e. the modified Bonar-Movin scoring method to evaluate tissue structural and 

cellular quality.

5.1 NI vision for tissue structural quality

Using Nl-Vision software, we tried to calculate collagen fibril density on OM 

(longitudinal view) and TEM (cross-sectional view) images o f tendons.
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For each image we chose a region o f interest (ROI). It should be noted that areas w ith  

damages caused by preparation were not included (e.g. damage caused by the knife; a 

fold in  the sample). In selected ROIs, fib rils  and spaces between them were found by 

contrast and separated into two categories: fib ril (black); and background (red) (Figure 

5-1). F ibril density was calculated by dividing number o f collagen fib r il pixels (black) by 

number o f pixels in the whole area (black+red).

However, we encountered a challenge to set an appropriate and repetitive contrast and, 

therefore, the proper fitting  o f the black-red image w ith  the origin image. Figure 5-1 is 

an example o f this challenge for OM images. By choosing identical ROIs in both images, 

but w ith  different contrasts, the resulting fiber densities were highly different: 78% vs. 

97%. This large variation could lead to inadequacy in quantitatively characterizing ECM 

structure. Therefore, we found this method inappropriate fo r our purpose.

We encountered the same problem w ith  TEM images. We therefore tried another 

method used in histological analysis o f tendinopathy: the semi-quantitative method of 

Bonar-Movin scale.

5.2 Bonar-m ovin fo r structural and cellu lar quality  

5.2.1 Using standard OM and TEM methods

Histological, semi-quantitative analyses were performed on microscopic images (OM 

and TEM) o f stimulated tendons. For this analysis we modified Bonar-Movin scoring 

scale. The variables we used in our scoring systems fo r OM images were: 1) cell 

morphology, 2) cell aggregation, 3) cell density, 4) fiber waviness, and 5) between-fiber 

spaces. The magnification used fo r the variable scoring was set at 2 Ox, except for "cell 

morphology". To have a more realistic scoring fo r cell morphology we used a higher 

magnification o f 40x. Each variable was scored between 0 and 3, as 0 corresponds the 

normal feature o f the tendons and 3 corresponds to the most severe damage could be 

detected in our samples (Table 5-1)
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Threshold=120 Thresholds 35

Density=0.78033 Density=0.97180

Figure 5-1: Impact of contrast on density results, a. Longitudinal section of H&E stained tendon under 
light microscopy, b, c. black-red images with different contrasts of original image (a). Selected ROIs in 

images b and c are identical, but with different contrasts. The resulting fiber densities are highly
different: 78% vs. 97%. Bar = 200 pm.
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Table 5-1: Modified Bonar-Movin scoring scale in this research

OM images (longitudinal sections) TEM images (Cross- 

sectionnal sections)

Cell

morphology

Cell

aggregation

Cell

density

Fiber

waviness

Between-

fiber

spaces

Fiber density

0 Elongated Long lines of 

cells

Low

density

Straight Low space High density

3 Round Isolated 

cells (OR 

small lines 

of cells)

High

density

Wavy Large space Low density

Two authors scored the images. After tw o weeks, they scored the same images again. If 

there was a difference o f more than one degree between the 4 readings o f a variable, it 

was scored for the final time w ith  consultation o f both authors. Figure 5-2 and Figure 

5-3 are examples o f our scoring scale taken from one reading from one author (out of 

four readings).
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24 relaxations 0 relaxation

'■'*52
Figure 5-3: light micrograph of rat tail tendon 
from 24-relaxation group. Cell morphology: 1;

Cell aggregation: 1; Cell density:l; Fiber 
waviness:l; Space between fiber:2. Bar = 200 

Jim

The global results obtained using this method is presented in figures Figure 5-4 

toFigure 5-9.

Figure 5-2: light micrograph of rat tail tendon 
from 0-relaxation group. Cell morphology:l; Cell 
aggregation^; Cell density:l; Fiber waviness:3; 

Space between fiber:!. Bar = 200 pm
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Figure 5-4: Modified Bonar-Movin scores for cell 
aggregation on OM images. * shows the agreement 

of two evaluations by the same author. ** shows 
the agreement of all four evaluations.

■  0 relaxation 
□  24 relaxation

Figure 5-5: Modified Bonar-Movin scores for cell 
density on OM images. * shows the agreement of 

two evaluations by the same author. ** shows the 
agreement of all four evaluations.
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Figure 5-6: Modified Bonar-Movin scores for cell 
morphology on OM images. * shows the agreement of 

two evaluations by the same author. ** shows the 
agreement of all four evaluations.

Figure 5-7: Modified Bonar-Movin scores for space 
between fibers on OM images. * shows the agreement of 

two evaluations by the same author. ** shows the 
agreement of all four evaluations.

OrtU&Jtlon 
24 rtiaxadons

■  0 Taxation 

□  24rtiuatiotts

Figure 5-8: Modified Bonar-Movin scores for fiber waves 
on OM images. * shows the agreement of two

Figure 5-9: Modified Bonar-Movin scores for fiber 
density on TEM images. * shows the agreement of two

evaluations by the same author. ** shows the agreement evaluations by the same author. ** shows the agreement 
of all four evaluations. of all four evaluations.
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The agreement o f four evaluations was assessed by the Intra-dass correlation (ICC) 

test. There was a perfect agreement between the four evaluations fo r all variables, 

except for cell aggregation (c.f. Figure 5-4 and Table 5-2). For cell aggregation there was 

a perfect agreement between the tw o evaluations o f each author but there was no 

agreement between the four evaluations i.e. there was no agreement between authors 

in scoring cell aggregation.

Table 5-2: ICC scores for each variable (1 indicates perfect agreement and 0 indicates no agreement For
this study the ICC was set at 0.80)

OM images (longitudinal sections) TEM images (Cross- 

sectionnal sections)

Cell

morphology

Cell

aggregatio

n

Cell

density

Fiber

waviness

Between-

fiber

spaces

Fiber

density

Author 1, 

evaluation 1

Author 1, 

evaluation 2

0.81

0.81

0.81

0.17

0.81

0.84

0.95

0.96

0.88

0.94

0.96

0.93
Author 2, 

evaluation 1 

Author 2, 

evaluation 2

0.87 0.89 0.93 0.91 0.85 0.91

The significance o f the difference between the scores of two groups were assesses by 

the Wilcoxon matched pair sign rank tes t We conducted the test on each o f the four 

scorings, the mean o f two scorings from each author, and the average o f all four 

readings from both authors. There was no significant difference between tissue 

qualities (including both ECM and cell qualities) o f 0 and 24 relaxation groups (p-value 

was set at 0.05).

We chose not to publish these data because o f some concerns about the ir re liability. For 

example, although four readings statistically agreed for most o f the variables, i.e. the
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four scorings were statistically repetitive, the trend o f difference between 0 and 24 

relaxation groups was not always repetitive between 4 evaluations (Figures 5-4 to 5-6).

One possible explanation is that the duration of mechanical stimulation, i.e. 3 days, was 

not long enough to change tissue structural properties. Thus, the tissues were not very 

damaged and, moreover, our scoring scale was based on our most damaged tissues. So, 

the score o f 3 was given for not so extensively damaged tissue. Therefore, i t  was 

d ifficult to classify the specimens because they all had sim ilar structure.

Another possibility is that rat ta il tendon preparation for OM is very difficult. Since the 

samples are very small and hard, damage can occur during preparation. Figure 5-10 

demonstrates a fresh tendon which was damaged during preparation. To overcome this 

challenge, other preparation methods (e.g. Fung's method (Fung, Wang et al. 2009)) 

could be used.

Figure 5-10: A fresh sample which was damaged during preparation. Bar = 200 pm

We also scored TEM images for the ir fiber density. Moreover, we studied cell 

morphology o f TEM images (Figure 5-11). We did not publish these results either since 

these images were taken from very small sections of tendon. Therefore, these images 

may not represent the overall sample. To have more reliable results, many images 

should be taken from  different spots on the specimen which would be very expensive
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and time consuming. Moreover, the tissue preparation was not always adequate for cell 

observation and the responsible technician retired during this process.

Overally, semi-quantitative analysis was also inappropriate fo r our purpose

To overcome the challenges for studying cellular quality, we adapted an existing 

method to be able to observe whole tendon section. The method is fluorescent 

microscopy imaging o f cryostat sectioned samples. I t  w ill be discussed in  the following 

section.

Figure 5-11: Electron micrograph of rat tail tendon cross-section. 3000 x magnification was used. 

5.2.2 A new alternative method for cellular quality

To study cell morphology we adapted a technique using cryostat sectioning o f Dil 

stained tissues (Vybrant CM-Dil cell-labeling solution, v22888) (C. M. McNEILLY 1996). 

Dil is a fluorescent dye fo r cell membrane labeling. The sections were cut in cross- 

sectional direction.

Here is the procedure we use at Biometiss for staining and cryostat sectioning o f the 

tendons. After 3-day experiment, small biopsies (about 5mm-length) were taken from 

the tendons. Then they were fixed in formalin (10%) fo r 24 hours. Biopsies fixation was 

done firs t to preserve the cell shape. Fixed samples were then transferred to Dil
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solution (1.5 micro lite r D il / lm l PBS). It  should be noted tha t Dil can be applied on live 

and fixed tissues. Biopsies in Dil were incubated at 37°C fo r 24 hours. A fter 24 hours of 

incubation, the biopsies were ready for cryostat sectioning.

Cryostat is a device which is used for cutting very th in sections of frozen tissue. Another 

student at Biometiss already tried to cut cross-sections in paraffin but i t  did not w ork 

well. Thus, we tried cryostat technique for this purpose. To study cells o f stained tissues 

we need to prepare slides of tissue in micron thickness. Tissues are therefore frozen 

inside cryostat chamber using tissue freezing medium. Frozen tissue is needed, because 

tissues should be hard enough to not get crushed during sectioning. The steps for 

cryostat sectioning are:

1) Cryostat device is turned on and the temperature is set at -30°C at least 45 min 

before starting the procedure, ( it  takes almost 45 min to reach -30°C);

2) The specimen is mounted on metal surface using OCT tissue freezing medium, 

and frozen inside the cryostat cooling chamber. The tissue is kept straight using 

tweezers inside the cooling chamber until i t  is frozen. Fixed samples, in addition 

to preserve the cell shape, are useful because they are easier to be kept straight.

3) Once frozen, the metal surface is mounted on the microtome.

4) The sample is sectioned into 50microns-thick. (we chose this thickness based on 

our prelim inary experiments)

5) The sections are mounted on the microscopy slides using mounting media. 

"Vectashield hard set” (H-1500, Vector Laboratories Inc, Burlingame) mounting 

media is used at Biometiss. This mounting media has the ab ility  to stain the 

nucleus w ith  DAPI.

6) Microscopic images are captured from tendon cross-sections mounted in 

microscopy slides.
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To observe prepared sectioned samples, we tried fluorescence microscopy in light and 

confocal microscopes. Figure 5-12 demonstrates a fluorescence image taken from light 

microscopy.

Figure 5-12 : Fluorescence micrograph of rat tail tendon section under light microscopy. The sample is
stained with Dil.

Although the cells can be observed in this image, the exact shape of membrane is not 

clear because the focus cannot be done on the whole specimen thickness. Therefore, we 

tried another microscope, i.e. the confocal microscope, to observe our samples.

In confocal microscopy, successive images from different depths of the specimen can be 

taken. Therefore, each image is a very th in  section, called as O-thickness section, o f the 

specimen cross-section. Imaging th in sections enable us to set focus for each image and 

thus observe cell morphology much easier on clear images. For example, the shape of 

the membrane and the processes o f the cell could be recognized (Figure 5-13). 

Moreover, since the membrane edges are not blurry, i t  is possible to estimate the cell 

size and consequently compare different tendons. Finally, putting together the images 

from different depths, we get a 3D image o f cells.
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Figure 5-13: Fluorescence micrograph of rat tail tendon section under confocal microscopy. The picture 
is taken from very thin section of the tendon, referred as O-thickness, at 10 micrometer depth. The 

sample is stained with Dil and DAP1. In (a) solely the nuclei of the cells are shown in blue. In (b) only 
membranes of the cells are shown in red. In (c) both membrane and nuclei of the cells are demonstrated.
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However, we did not publish these data since we recently adapted this method at 

Biometiss and it  is in prelim inary steps and there are some challenges which s till need 

to be resolved.

The firs t challenge is to cut tendon sections perpendicular to tendon longitudinal 

direction. It raises either from the d ifficu lty  o f freezing tendon exactly perpendicular to 

the metal surface or from the d ifficu lty o f adjusting the cutting blade parallel to the 

sample section.

The second is that, although D il has the ab ility  to stain even fixed samples, i t  seems that 

Dil could not go through tendon sheath easily since the coloration at the center o f the 

tendon is always less than around i t  However, there is a concern that i f  we firs t stain 

and then fix the samples, the cell shape could undergo some changes since the staining 

process takes 24 hours.

Finally, there is an offset between discrete levels o f tendon cross section images, i.e. the 

axis which connects the centroids o f images is inclined. One probable possibility is that 

the samples are moving slightly inside microscopy slides. Also, it is possible that cut 

sections are not parallel to original tendon section. Since the desk o f confocal 

microscopy is anti-shaking, the possibility o f shaking desk has not been considered.

Hopefully, by removing these lim itations, we w ill be able to expand our knowledge of 

cell study based on this method in future experiments.
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6. Conclusion

In this chapter, concluding remarks based on the findings o f this research project w ill 

be presented. In order to stress the results, next section w ill brie fly review 

achievements o f the research along w ith  conclusions which were drawn from the 

results. Then, the novelty and contributions corresponding to these results are outlined. 

Afterwards, the burdens which lim ited this research project are explained. In the last 

section, some suggestions and propositions has been made in order to improve and 

follow up this research pro ject

Dans ce chapitre, sont presentees des conclusions basees sur les resultats de ce projet 

de recherche. Afin de mettre en lumiere les resultats, la prochaine section resume 

brievement les accomplissements de l’etude ainsi que les conclusions s'y rattachant 

Puis, la nouveaute et les contributions associees a ces resultats sont exposees. Par la 

suite, les lim itations de ce projet de recherche sont expliquees. Dans la dernifcre section, 

quelques suggestions et propositions sont faites pour ameliorer et continuer ce projet 

de recherche.

6.1 Summary

In this section, a summary of the w ork which has been done in this project to achieve 

the objectives is presented.

The two objectives o f this research study were:

1) To review the literature about viscoelasticity and viscoplasticity, and the way 

these two tissue properties affect live tissue response to mechanobiological 

stimulation;

2) To investigate whether diagnostic test o f physiological amplitude affects live 

tissue response to mechanical stimulation.
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A review article has been w ritten  to accomplish objective 1. In that article we 

mentioned that tissue exposes two macro-mechanical behaviors: viscoelastic and 

viscoplastic behavior. Tissue viscosity comes from frictional losses related to water 

content o f ECM and/or to the relative motion o f collagens. Tissue elasticity originates 

from collagen recoverable extension and collagen unit slid ing past another. Tissue 

plasticity is a result o f non-recoverable collagen extension related to high magnitude 

loading, or high repetitive loading which leads to ECM micro damages or non-reversible 

collagens sliding. Viscosity combines w ith  either elasticity or plasticity in live tissue 

depending on tissue quality (combination o f structural, compositional, and mechanical 

properties o f tissue) and applied load.

Tissue viscoelasticity and viscoplasticity affect live tissue response to applied load. This 

response includes ECM response and cellular response. Briefly, the applied load on ECM 

is scaled down to be sensed by cells through mechanotransduction mechanisms. Even 

under condition o f constant applied load, cell sense of applied load could change 

because o f viscoelasticity and viscoplasticity. Stress-relaxation and creep are examples 

of this situation. Therefore, cell response, which is repair o r degradation, changes and 

affects ECM structure. Consequently macro-mechanical behavior o f tissue, i.e. 

viscoelasticity and viscoplasticity, are affected.

Therefore, we concluded that it is essential to take into account viscoelasticity and 

viscoplasticity of tissue while developing a tissue stimulation protocol fo r in vitro 

research and in vivo clinical applications. In other words, tissue progression could be 

affected by some parameters o f the stimulation protocol because o f these two 

behaviors. The parameters which should be highlighted in designing stimulation 

protocols are:

1) Control-type o f stimulation: stress-controlled experiments affect tissue 

progression in a different manner than strain-controlled experiments.

2) Stimulus history: resting periods affect tissue progression ;
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3) Intelligent bioreactor or adjustable protocol: biophysical stim uli should be 

adjusted according to changes o f tissue quality resulting from tissue progression 

over time;

4) Mechanical characterization protocol: the methods used to  evaluate tissue 

progression over time could affect tissue progression.

To fu lfill objective 2, we designed a stimulation protocol to investigate whether 

applying stress-relaxation tests to evaluate tissue progression over time affect this 

tissue progression or n o t We conducted a 3-day experiment, based on this stimulation 

protocol, on freshly extracted tendons. The tendons were divided in to  tw o groups: the 

firs t group underwent no stress-relaxation test (0 relaxation) and the other group 

underwent 24 relaxation tests each day.

The results showed that applying stress-relaxation tests at physiological amplitude can 

modify tissue progression over time. The changes in modulus, a representative variable 

for mechanical properties, over the 3-day experiment were significantly different 

between the two groups. There was a decrease in mechanical properties of the 24- 

relaxation group even at the very beginning o f the experiment.

Since our mechanical characterization method was in-line and non-destructive, we 

were able to conduct structural characterization after mechanical test. However, the 

difference between the structures o f the two groups was not significant The results of 

our experimental study approved the conclusion of the review article. In fact, we 

proved that mechanical characterization protocol, as an important parameter in 

stimulation protocol, affects live tissue progression as a result of its macro-mechanical 

behavior.

Resume

Dans cette section, un resume du travail accompli dans ce projet pour realiser les 

objectifs sont presentes.
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Les deux objectifs de cette etude etaient:

1) De revoir la litterature a propos de la viscoelasticite et de la viscoplasticite, ainsi 

que de la fa£on dont ces deux comportements affectent la reponse des tissus 

vivants aux stimulations mecanobiologiques;

2) D’investiguer si des essais diagnostiques d'amplitude physiologique affectent la 

reponse de tissus vivants a des stimulations mecaniques,

Un article de type "revue" a ete ecrit pour accomplir le premier objectif. Dans cet article, 

nous mentionnons que les tissus sont exposes a deux comportements macro- 

mecaniques: la viscoelasticite et la viscoplasticite. La viscosity des tissues vient des 

pertes frictionnelles reliees au conteriu en eau de la matrice extracellulaire (MEC) et/ou 

du deplacement re la tif des unites de collagenes. L'elasticite des tissus provient de 

l’extension reversible du collagene mais aussi du glissement re latif des unites de 

collagene les unes par rapport aux autres. Enfin, la plasticite est le resultat de 

l ’extension non-reversible du collagene (associee & de grandes amplitudes de 

chargement ou a des chargements de grandes repetitions) menant a des micro- 

dommages dans la MEC ou a un glissement non-reversible du collagene. Dans les tissus 

vivants, la viscosite se combine avec l'elasticite ou la plasticite dependamment de la 

qualite du tissu (combinaison des proprietes structurelles, compositionnelles et 

mecanique) et du chargement applique.

La viscoelasticite et la viscoplasticite affectent la reponse des tissus au chargement 

applique. Cette reponse inclus la reponse de la MEC et la reponse des cellules. 

Brievement, un chargement applique sur la MEC est reduit de fa^on a etre ressenti par 

les cellules via des mecanismes de mecanotransduction. Meme si un chargement 

constant est applique macroscopiquement au tissu, le chargement local ressenti par les 

cellules pourrait varier dans le temps a cause de la viscoelasticite et de la 

viscoplasticite. La relaxation de contrainte et le fluage sont des exemples de cette 

situation. C'est ainsi que la reponse cellulaire (reparation ou degradation de la MEC) 

varie aussi dans le temps et affecte la qualite de la MEC. En consequence, les
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comportements macro-mecaniques que sont la viscoelasticite et la viscoplasticite sont 

affectes.

Ainsi, nous concluons qu’il est essentiel de considerer la viscoelasticite et la 

viscoplasticite des tissus lors du developpement d'un protocole de stimulation pour la 

recherche in vitro  et les applications cliniques in vivo. En d’autres mots, la progression 

pourrait etre affectee par des parametres du protocole de stimulation a cause de ces 

deux comportements. Les parametres qui doivent etre mis en lumiere so n t:

5) Type de controle pour les stimulations: Les experimentations menees sous un 

controle en contrainte affectent la progression des tissus differemment que les 

experimentations menees sous un controle en deformation;

6) Histoire du chargement: Des periodes de repos affectent la progression des 

tissus;

7) Bioreacteurs intelligents ou protocoles ajustables: Les stim uli biophysiques 

devraient etre ajustes selon les changements dans la qualite des tissus resultant 

de la progression des tissus dans le temps;

8) Protocole de caracterisation mecanique : Les methodes utilisees pour evaluer la 

progression des tissus dans le temps pourraient affecter la progression des 

tissus.

Pour repondre a l'ob jectif 2, nous avons con^u un protocole de stimulation afin 

d’investiguer si l'application d’essais de relaxation de contrainte pour evaluer la 

progression des tissus dans le temps affecte ou non la progression des tissus. Nous 

avons realise une experimentation de trois jours, bas£e sur ce protocole de stimulation, 

sur des tendons fraichement extraits. Les tendons ont ete divises en deux groupes : Le 

premier groupe n'a subi aucun essai de relaxation de contrainte (0 relaxation) tandis 

que le second groupe a et6 soumis & 24 essais de relaxation de contrainte 

quotidiennement
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Les resultats ont demontre que l'application d'essais de relaxation de contrainte 

d'amplitude physiologique peut modifier la progression des tissus dans le temps. Les 

changements de module, une variable representative pour les proprietes mecaniques, 

etaient significativement differents dans les deux groupes, et ce, sur les tro is jours 

d'experimentation. II y avait une dim inution relative dans les proprietes mecaniques du 

groupe de 24 relaxations des le debut de l'experimentation.

Puisque notre methode de caracterisation etait « en ligne » et non-destructive, nous 

avons pu realiser des essais de caracterisation structurale apres les tests mecaniques. 

Toutefois, la difference entre les deux groupes etait non significative.

Les resultats de notre etude experimentale appuient les conclusions de Particle de type 

« revue ». En fait, nous avons demontre que le protocole de caracterisation mecanique 

affecte la progression des tissus vivants a cause de ses comportements macro- 

mecaniques.

6.2 Contributions

This section outlines the original contributions o f this project.

Since tissue mechanobiology is an interdisciplinary field, i t  is difficult to have all the 

knowledge from biology and mechanics. Therefore, in  the review article, we tried  to link  

these two disciplines. We highlighted the viscoelasticity and viscoplasticity o f live 

tissue to notify about the effect of these behaviors on live tissue response to biophysical 

stimulations. This was the firs t original contribution o f this project.

Moreover, we found that using diagnostic tests, even at physiological amplitude, could 

affect tissue progression over time. Therefore, our answer to this paradoxical question: 

"How can we measure the tissue progression over time i f  i t  responds to our measurement 

methods?" is to use the stimulation itse lf to observe tissue progression rather than 

diagnostic tests. I t  was the second original contribution.

Finally, as the last novelty, we adapted a new method at Biometiss to characterize cell 

quality w ith  fluorescent microscopy imaging of tendon cross-sections in confocal
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microscope. We achieved the desired thickness o f samples (50 m icron) w ith  cryostat 

sectioning. However, this method should s till be improved to get publishable results.

Contributions

Cette section met en re lie f les contributions originales de ce projet.

Puisque la mecanobiologie est un domaine interdisciplinaire, il est d iffic ile  d'avoir toute 

la connaissance de la biologie et de la mecanique. Ainsi, dans l'article de type « revue », 

nous avons tente de re lier ces deux disciplines. Nous avons mis en lumiere la 

viscoelasticite et la viscoplasticite des tissus vivants pour souligner l ’effet de ces 

comportements sur la rdponse des tissus vivants aux stim u li mecaniques. Ceci etait la 

premiere contribution originale du present projet.

De plus, nous avons demontre qu’u tiliser des essais diagnostiques, meme d'amplitude 

physiologique, peut affecter la progression des tissus dans le temps. C'est pour quoi, 

notre reponse a la question paradoxale: « Comment pouvons-nous mesurer la 

progression d'un tissu dans le temps s'il repond a nos methodes de mesure? » consiste a 

utiliser la stimulation elle-meme pour observer la progression d'un tissu p lu to t que des 

essais diagnostiques. Ceci constitue notre deuxieme contribution originale.

Finalement, comme derniere nouveaute, nous avons adapte une nouvelle methode dans 

Biometiss pour caracteriser la qualite des cellules a l'aide d’images de sections 

transversales de tendon prises sous microscopie a fluorescence. Nous avons obtenu 

l'epaisseur desiree des echantillons (50 microns) a l'aide d'un cryostat Toutefois, cette 

methode do it toujours etre amelioree afin d'obtenir des resultats publiables.

6.3 Lim itations

This section describes the lim itations which restricted and decreased some potential 

results.
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First, the bioreactor occasionally did not provide the exact displacement i t  was assigned 

to. Moreover, in some cases the load cell and/or encoder were malfunctioning. In all 

cases the related tendons were discarded.

Second, there were some challenges for structural characterization of tendon:

• For quantitative structural characterization using Nl-Vision software, there was 

a difficulty to set an appropriate and repetitive contrast, and consequently 

proper fitting  o f black-red image w ith  the origin image. This would make a 

significant error in quantifying tissue structural quality.

• For semi-quantitatively structural characterization using the Bonar-Movin 

scoring scale, there were some difficulties fo r scoring the images. The scoring 

scale was based on the most damaged tissues while most of the samples from 

both groups (O-relaxation and 24-relaxation tests) were not much damaged. 

Moreover, because o f some imperfections in tissue preparation for OM 

microscopy, there were some damage signs (e.g. collagen partial tears, or large 

spaces between fibers) which were not the result of stimulation. These 

difficulties led to non-repetitive scorings and/or mistaken scorings.

Finally, as the framework of this thesis, we conducted the experiment based on only one 

protocol and on only one tissue quality i.e. freshly extracted tendons. To have a better 

understanding of how diagnostic tests affect tissue progression other protocols could 

be designed, e.g. using more or less repetitions o f stress- relaxation tests each day. 

Moreover, the protocols could be tested on damaged tissue to investigate whether the 

effect o f diagnostic test on tissue progression changes or n o t

Limites

Cette section decrit les limites qui ont affecte negativement des resultats potentiels.
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Premierement, il a rriva it que le bioreacteur ne fournisse pas le deplacement exact 

demande. De plus, il a rriva it que la cellule de force e t/ou  l'encodeur fonctionne mal. 

Dans tous ces cas, les tendons affectes etaient exclus de l'analyse.

Deuxiemement, nous avons rencontre des defis dans la caracterisation structurale des 

tendons:

• Pour la caracterisation structurale quantitative a l’aide du logiciel Nl-Vision, il 

etait d ifficile de fixer un contraste approprie et repetitif et, consequemment, de 

transformer adequatement l'image originale en image rouge et noire. Ceci creait 

des erreurs significatives lors de la quantification de la qualite structurale des 

tissus.

• Pour la caracterisation structurale semi-quantitative a l'aide de l'echelle de 

Bonar-Movin, nous avons rencontre certaines difficultes a noter les images. 

L'echelle de notation etait basee sur les tissus les plus endommages alors que la 

majorite des echantillons des deux groupes (0 et 24 relaxations) n'etait pas si 

endommagee. De plus, a cause de certaines imperfections dans la preparation 

des tissus pour la microscopie optique, il y avait des signes de dommages (e.g. 

dechirures partielles du collagene ou larges espaces entre les fibres) qui 

n'etaient pas le resultat de la stimulation. Ces difficultes ont mene a des notes 

non repetitives ou erronees.

Finalement, dans ce projet, nous avons mene une experimentation basee sur seulement 

un protocole et une qualite de tissu soit des tendons fraichement extraits. Pour obtenir 

une meilleure comprehension de comment les essais diagnostiques affectent la 

progression des tissus, d’autres protocoles pourraient etre con^us, par exemple en 

utilisant plus ou moins de repetitions des essais de relaxation de contrainte chaque 

jour. De plus, les protocoles pourraient etre testes sur des tissu endommages pour 

investiguer si l'effet des essais diagnostiques sur la progression de tissus changerait ou 

non.
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6.4 Future work

There are several potential studies which could be pursued following this research 

study in order to extend our understanding o f tissue mechanobiology.

First, as mentioned in the previous section, we conducted the stimulation protocols 

including 0 or 24 relaxation tests. We could design other protocols by changing the 

parameters o f the stimulation protocol e.g. changing the numbers and/or duration of 

relaxation test, shortening or lengthening the rest periods, etc. Moreover, we could 

conduct the experiment on damaged tissue instead o f healthy one. By applying these 

new experimental conditions, whether the effect o f diagnostic tests on tissue 

progression increases or decreases or remains constant could be investigated.

Second, by using the results o f this study, the stimulation protocols could be optimized. 

For example, since diagnostic tests could modify tissue progression over time, they 

should be considered as part o f the stimulation not to introduce more energy to tissues. 

As another example, considering that stress-controlled and strain-controlled 

experiments modify tissue progression in different ways, we could design stimulation 

protocols w ith  a combination o f both control types. Using each control type at different 

time points makes i t  possible to change the type o f tissue progression in order to 

achieve the desired tissue quality. These optimized stimulation protocols could be used 

to improve tissue quality or to optimize the healing o f damaged tissues.

Finally, in order to be able to conduct in vitro  experiments in in vivo conditions, in vitro 

stimulation parameters should be translated into in vivo parameters. This arises many 

questions and thus needs to be deeply studied. Some parameters, such as frequency and 

rest periods, could merely be applied to in vivo i.e. the frequency of in vitro  stim uli and 

the rest periods between in vitro stim uli could simply be adjusted to daily or 

occupational activities. For some other parameters, such as stimulation control type 

(stress-control vs strain-control), the corresponding situation in  daily o r occupational 

activities (such as walking, and repetitive manual handling) is not fu lly  clarified. 

Therefore, i t  is challenging to translate in vitro  studies to  in vivo applications. 

Consequently, more investigation is required. For example, we could investigate
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whether: passive motions could be considered as a strain-controlled in vivo experiment, 

active motions could be considered as stress-controlled in vivo experiment, etc.

The results o f this w ork could be helpful in developing methods o f rehabilitation and 

improving live tissues quality through the design o f more optim ized treatment 

strategies based on mechanobiology for both bioreactor experiment and clinical 

application.

Travaux future

II y a plusieurs etudes potentielles qui pourraient etre realises pour poursuivre cette 

etude afin d’approfondir notre comprehension de la mecanobiologie tissulaire.

Premierement, tel que mentionne dans la section precedente, nous avons realise des 

protocoles de stimulation incluant 0 et 24 essais de relaxation de contrainte. Nous 

pourrions concevoir d'autres protocoles en changeant les parametres de stimulation, 

par exemple en changeant le nombre et/ou la duree des essais de relaxation de 

contrainte, en raccourcissant ou en allongeant les periodes de repos, etc. De plus, nous 

pourrions realiser l'experimentation sur des tendons endommages p lu to t que sur des 

tendons sains. En appliquant ces nouvelles conditions expSrimentales, il serait possible 

d'investiguer si l ’effet des essais diagnostiques sur la progression des tissus diminue, 

augmente ou demeure identique.

Deuxiemement, en utilisant les resultats de cette etude, les protocoles de stimulation 

pourraient §tre optimises. Par exemple, puisque des essais diagnostiques pourraient 

influencer la progression des tissus dans le temps, ils devraient §tre consideres comme 

faisant partie du protocole de stimulation parce qu'ils induisent de la nouvelle energie 

dans les tissus. Comme autre exemple, considerant que des experimentations sous 

controle en contrainte vs en deformation influences differemment la progression des 

tissus, nous pourrions concevoir des protocoles combinant les deux types de controle. 

En utilisant chaque type de controle a differents moments rendrait possible de changer 

la progression du tissu afin d'obtenir la qualite tissulaire desires. Ces protocoles de
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stimulation optimises pourraient etre utilises pour ameliorer la qualite des tissus ou 

pour optimiser la guerison des tissus endommages.

Finalement, afin de pouvoir realiser des experimentations in vitro  sous des conditions 

in vivo, les parametres de stimulation in vitro  doivent etre traduits en parametres de 

stimulation in vivo. Ceci souleve plusieurs questions et necessite done d'etre etudie en 

profondeur. Quelques parametres pourraient simplement etre appliques in vitro. Par 

exemple, la frequence de stim uli in vitro  et les periodes de repos entre les stim uli in 

vitro pourraient simplement §tre ajustees aux activites quotidiennes ou au travail. Pour 

d’autres parametre comme le type de controle (controle en contrainte vs controle en 

deformation), les situations correspondantes dans les activites quotidienne ou au 

travail (e.g. marcher, realiser une tache repetitive au travail) ne sont pas totalement 

clarifiees. Done, il est difficile de traduire les etudes in vitro  en applications in vivo. En 

consequence, plus d'investigation sont requises. Par exemple, nous pourrions 

investiguer si des mouvements passifs peuvent etre considerer comme des 

experimentations sous controle de deformation in vivo, si des mouvements actifs 

peuvent etre consideres comme des experimentations sous controle en contrainte in 

vivo, etc.

Les resultats de ce travail pourra it etre benefiques au developpement de methodes de 

readaptation et a l'amelioration de la qualite des tissus via la conception de strategies 

optimisees basee sur la mecanobiologie tant pour des experimentations en bioreacteurs 

que pour des applications cliniques.
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